Über dieses Buch

Dies ist ein digitales Exemplar eines Buches, das seit Generationen in den Regalen der Bibliotheken aufbewahrt wurde, bevor es von Google im Rahmen eines Projekts, mit dem die Bücher dieser Welt online verfügbar gemacht werden sollen, sorgfältig gescannt wurde.

Das Buch hat das Urheberrecht überdauert und kann nun öffentlich zugänglich gemacht werden. Ein öffentlich zugängliches Buch ist ein Buch, das niemals Urheberrechten unterlag oder bei dem die Schutzfrist des Urheberrechts abgelaufen ist. Ob ein Buch öffentlich zugänglich ist, kann von Land zu Land unterschiedlich sein. Öffentlich zugängliche Bücher sind unser Tor zur Vergangenheit und stellen ein geschichtliches, kulturelles und wissenschaftliches Vermögen dar, das häufig nur schwierig zu entdecken ist.
Gebrauchsspuren, Anmerkungen und andere Randbemerkungen, die im Originalband enthalten sind, finden sich auch in dieser Datei - eine Erinnerung an die lange Reise, die das Buch vom Verleger zu einer Bibliothek und weiter zu Ihnen hinter sich gebracht hat.

Nutzungsrichtlinien

Google ist stolz, mit Bibliotheken in partnerschaftlicher Zusammenarbeit öffentlich zugängliches Material zu digitalisieren und einer breiten Masse zugänglich zu machen. Öffentlich zugängliche Bücher gehören der Öffentlichkeit, und wir sind nur ihre Hüter. Nichtsdestotrotz ist diese Arbeit kostspielig. Um diese Ressource weiterhin zur Verfügung stellen zu können, haben wir Schritte unternommen, um den Missbrauch durch kommerzielle Parteien zu verhindern. Dazu gehören technische Einschränkungen für automatisierte Abfragen.
Wir bitten Sie um Einhaltung folgender Richtlinien:

+ Nutzung der Dateien zu nichtkommerziellen Zwecken Wir haben Google Buchsuche für Endanwender konzipiert und möchten, dass Sie diese Dateien nur für persönliche, nichtkommerzielle Zwecke verwenden.
+ Keine automatisierten Abfragen Senden Sie keine automatisierten Abfragen irgendwelcher Art an das Google-System. Wenn Sie Recherchen über maschinelle Übersetzung, optische Zeichenerkennung oder andere Bereiche durchführen, in denen der Zugang zu Text in großen Mengen nützlich ist, wenden Sie sich bitte an uns. Wir fördern die Nutzung des öffentlich zugänglichen Materials für diese Zwecke und können Ihnen unter Umständen helfen.
+ Beibehaltung von Google-Markenelementen Das "Wasserzeichen" von Google, das Sie in jeder Datei finden, ist wichtig zur Information über dieses Projekt und hilft den Anwendern weiteres Material über Google Buchsuche zu finden. Bitte entfernen Sie das Wasserzeichen nicht.
+ Bewegen Sie sich innerhalb der Legalität Unabhängig von Ihrem Verwendungszweck müssen Sie sich Ihrer Verantwortung bewusst sein, sicherzustellen, dass Ihre Nutzung legal ist. Gehen Sie nicht davon aus, dass ein Buch, das nach unserem Dafürhalten für Nutzer in den USA öffentlich zugänglich ist, auch für Nutzer in anderen Ländern öffentlich zugänglich ist. Ob ein Buch noch dem Urheberrecht unterliegt, ist von Land zu Land verschieden. Wir können keine Beratung leisten, ob eine bestimmte Nutzung eines bestimmten Buches gesetzlich zulässig ist. Gehen Sie nicht davon aus, dass das Erscheinen eines Buchs in Google Buchsuche bedeutet, dass es in jeder Form und überall auf der Welt verwendet werden kann. Eine Urheberrechtsverletzung kann schwerwiegende Folgen haben.

Über Google Buchsuche

Das Ziel von Google besteht darin, die weltweiten Informationen zu organisieren und allgemein nutzbar und zugänglich zu machen. Google Buchsuche hilft Lesern dabei, die Bücher dieser Welt zu entdecken, und unterstützt Autoren und Verleger dabei, neue Zielgruppen zu erreichen. Den gesamten Buchtext können Sie im Internet unterhttp://books.google.com durchsuchen.

This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

TR•EATSE

CONTAINING

The Practical Part

0 F
 FORTIFICATION:

In FOUR PARTS.
I. The Theory of Walls, Arches, and Timbers, with feveral Tables of their Dimenfions.
II. The Knowledge of the Materials, their Properties, Qualities, and the Manner of ufing them,
III. The Manner of tracing a Fortrefs on theGround, the making an Eftimate, and executing the Works.
IV. The Method of building Aquatics, as Stonebridges, Harbours,Quays, Wharfs, Sluices, and Aqueducts.

Illuftrated with Twenty eight Coppre Plates.
For the Use of
The Royal Academy of Artileery at Woolwich.

By JOHN M ULLER, Profeffor of Artillery and Fortification.

The Second Edition, with Improvements.

$$
L O N D O N:
$$

Printed for A. Milear, in the Strand. MDCCLXIV.

Transportione Libers)
《G
400

$$
M 96
$$

$$
1764
$$

T 0

HIS ROYAL HIGHNESS

GEORGE,

Prince of WALES.

S I R,
MHE generous encouragement conftantly given by your Royal Progenitors to thofe who have endeavoured to make any Improvements in the ufeful arts and fciences, makes me flatter myfelf that Your Royal Highnefs, who give fuch early hopes of inheriting all their virtues, will be gracioufly pleafed to honour the following treatife with Your Patronage.

My aim in publifhing it, is to Shew how fortreffes may be built in the beft and cheapeft manner. I may venture to fay, that a work of this kind has been hitherto wanting in the Englifb language : and I may add, that the fubject is moft certainly of importance; experience having too often hewn the fatal effects which the neglect of the art of Fortification may pro22
duce, as well as the advantages arifing to our prudent neighbours from the great encouragements they give to this branch of Knowledge.

Your Royal Grandfather, ever attentive to the public fecurity and welfare, mot gracioufly inftituted the Royal Academy of Artillery for the inftruction of young gentlemen in the Art of War. As it is my duty, fo it has ever been my care, to facilitate their ftudies: and if my labours should be thought to deferve Your Royal Highnets's attention and approbation, it would be an inexpreffible fatisfaction to me, who think myfelf happy in every opportunity of Chewing the profound reflect with which I am,

$$
S I R
$$

Your Royal Highness's

mof bumble,
moot dutiful

Woolwich, Sept. 1755°
and mos obedient Servant,
John Muller

PREEAC.

WHEN a fortrefs is to be built, to choofe fuch a fituation as will anfwer the intent in the beft manner, to adapt the works porperly, and to ufe no more than are neceffary, to make from their plans and profils an eftimate of the quantity of mafonry requifite, and of the earth to be removed, to trace the plan on the ground, to lay the foundation in any kind of foil, to compleat the walls, ramparts, and all the military buildings, fuch as draw-bridges, town-gates, powdermagazines, barracks, ftore-houfes, cazemats, and fally-ports; thefe are the fubjects of Practical Fortification, and what we propofe to treat of in the following work, together with the manner of building ftone-bridges over large rivers, piers for inclofing harbours, wharfs, quays, fluices, and aqueducts.

As no Treatife of this kind has appeared yet in Englifh, I thought it would not altogether be ufelefs to the public, if I hould give, in a plain and eafy manner, the conftruction and executive part of the works belonging to a fortrefs, and add whatever might contribute to the improvement of this

[^0]ufeful art, fuch as the theories contained in this work, which it has been my endeavour to render as general, and as fimple as the nature of the fabject will admit of, that they might extend to all the different cafes which may occur, and at the fame time be with eafe adapted to common practice.

It being of importance to know the proper thickneffes of the walls which fupport earth, fo that they may be ftrong and durable, yet not more fo than is neceffary; therefore this work begins with a general theory of them; which being deduced from the leaft exceptionable principles, is applicable in all kinds of foils and cafes: for the common fuppofition made by fome gentlemen of the Academy of Sciences at Paris, and by Mr. Belidor; that the natural flope of earth not fupported by a wall forms an angle with the horizon of $45 \mathrm{de}-$ grees, is true in one particular kind of foil only. This is plain to reafon, from the different tenacities of different foils, and may be verified by an eafy experiment; which will ferve likewife as a practical method for finding the angle formed by the natural flope of any kind of earth.

Make a bank of newly removed earth about ten or twelve feet high, and cut it vertically on one fide; this bank being left ftanding during eight or ten months in the dampeft feafon, will form the angle required. It is true, the particles of earth being heterogeneous, they will not form an even furface, therefore that angle will vary in different places; but as in practice no geometrical exactnefs can be obtained, nor is required; if that angle comes within five degrees of the real one, it is fufficient; for that quantity, more or lefs, makes little difference in the thicknefs of walls, as may be feen
in the table of general rules. Since thenfand caufes a greater preffure, and clay alefs one, than common earth; to make the walls in each cafe of an equal ftrength would endanger thofe which fupport fand of falling down, and there would be more work than need be in thofe which fupport clay: befides, as ftone is fpecifically heavier than brick, it is evident, that ftone walls do not require fo great a thicknefs as thofe made of brick, yet the gentlemen mentioned before, have made no diftinction between the one and the other in their theories.

As fome of my readers may not underftand algebra, which I have been obliged to ufe, in order to make the theory general; therefore, to render this work ufeful to every reader, I have added a table, containing general rules for finding the dimenfions of ftone and brick walls of any height, according to the different angles made by the natural Iope of earth with a vertical fection, from 80 to 30 degrees for every 5 degrees interval, and according to the different flopes given to walls on the outfide. The natural hope of common earth making nearly an angle of 45 degrees, and being the cafe that moft frequently happens in practice; I have computed four tables of dimenfions upon this fuppofition, two for fone walls, and two for brick ones, from ten to fifty feet high, with or without parapets: there tables contain the thickneffes above and below in regard to the different flopes given to the walls on the outfide, together with the dimenfions of the counterforts; in order to fave a builder the trouble of computing them himfelf, although it be very fhort and eafy.

Since fortreffes are moflly built at prefent with demi-revetements, that is, they are partly walled,

$\begin{array}{llllllll}v i i i & P & R & E & F & A & C & E .\end{array}$

and partly turfed on the outfide; I imagined that tables containing the dimenfions of this kind of walls would alfo be very ufeful, and fo much the more acceptable to the reader, as no author has given any before; this was not owing to any belief that they were not ufeful, but rather to the difficulties in conftructing them: for as the height of the walls and that of the earth above them, form an infinite number of cafes, to comprehend them all in a table would have been impoffible : therefore the only thing that could have been expected was to give tables of their ratio's, as we have done.

That I might omit nothing ufeful in practice, I have given problems of all the different profils of walls which have hitherto been ufed upon various occafions; and have compared the quantity of mafonry that each of them requires, in order to know which is preferable to the reft; whereas the French authors, who are the only ones that have written upon this fubject, have implicitly followed the profil of Mr . Vauban, as being univerfally ufed by all the engineers in France, without confidering whether it might not be changed for another better adapted to the nature of the fubject; whereby they have been reduced to the neceffity of making their computations fo very operofe as they have done ; on the contrary, I confidered that as the fections in the fame kind of earth are always fimilar, by making the profils likewife fimilar, the operations would become very eafy; fince the thickneffes of thofe walls which have the fame flope would then be to their heights in a conftant ratio.

I proceed next to the theory of arches, which is efteemed one of the moft difficult problems in mechanics;

P R E F A C. 13

 chanics; for tho' feveral eminent mathematicians. have attempted to folve it, yet in my opinion, not one has entirely fucceeded; for whoever reads their performances of this kind, will find, whenever their general equations are applied to any particular example, that nothing but abfurdities follow from fome, and fuch dimenfions from others, as by no means anfwer the purpofe. Some of them have fuppofed thatall the arch-ftones were quite fmooth and polifhed, laid without any cement or mortar; and others, that the part of the arch between the key-ftone and the hanches was as it were one continued fone, and theother part between the hanches and the fpring of the arch, joined to the pier as if all together formed likewife one ftone: but as both thefe fuppofitions are erroneous, and contrary to what happens in arches, it is evident, that the conclufions drawn therefrom cannot be juft.I haveconfidered the preffure of every arch-ftone feparately, both in regard to its weight and the obliquity of its direction, and have fuppofed them to be laid in fuch mortar, as is neither hard enough to make the arch like one continued ftone, nor yet fo foft as that they may flide with eafe upon each other : from thence, and fome known principles of mechanics, it is eafily proved, that the fum of the preflures of all the arch-ftones contained in half the arch is equal to the preffure which the whole weight would make, were it placed in the center of gravity of half the arch; whereby the folution of the problem has been reduced to that of finding the centers of gravity in the feveral figures of which arches are compofed, which centers are found in the moft fimple and eafy manner that the nature
of the fubject will admit of; and the folution of the problem, whereby the thickneffes of the piers are found, is contained in a very fimple quadratic equation.

It has hitherto been imagined, though without any foundation, that an elliptic arch is weaker, and preffes the piers with a greater force than a circular one: the reafon which authors pretend to give for this fuppofition is, that all the joints of a circular arch when produced meet in the fame point; from thence they erroneoully conclude, that it is the ftrongeft; without confidering that all low arches require lefs mafonry than thofe which are higher, and that the increafe of force againft the piers, arifing from the obliquity of their directions, is diminifhed more in proportion by the leffer quantity of weight which they fupport.

In the problems given of the feveral kinds of arches, it has been found, that the thicknefs of the piers are nearly the fame in all arches of the fame width; though thofe of circular ones are rather greater than any others, but yet not fo much as deferves to be taken notice of. This appears alfo from the common principles of mechanics; fince the higheft arches, which are moft loaded, have the directions of their preffures lefs oblique; and on the contrary, the loweft, which are leaft loaded, have the directions of their preffures more inclined.

This being demonftrated, many difficulties, which often arife in the conftruction of arches, are eafily avoided: as for example, when a powder magazine built in the common manner would become fo high as to be feen from without, it may be made with an elliptic arch: when cazemats,

$\mathbf{P} \quad \begin{array}{lllllll}\mathbf{R} & \mathrm{E} & \mathrm{F} & \mathrm{A} & \mathrm{C} & \mathrm{E} . \quad \text { xi }\end{array}$

fally-ports, or any other fubterraneous buildings are to be built under low ramparts, and there is not a fufficient quantity of earth to cover them if the arches were made circular, they may be made elliptic, or with arcs of circles. It is true, that elliptic arches may appear not fo ftrong in powder magazines as circular ones, and of confequence, lefs able to refift the fhock' of the fhells thrown upon them: but if it be confidered, that they are more curvated at their hanches where they are thinneft, and that the middle of the arch, which is its weakeft part, is fufficiently covered by mafonry to apprehend no danger there; it will be found that the elliptic arches are full as ftrong as the circular ones.

But the greateft ufe of elliptic arches appears to be in the building of bridges, and they feem indeed to be the only ones that are proper for fuch works: for when the arches are of a great width, the circular form raifes the middle of the bridge too high above the ends, whereby the draught of heavy carriages becomes very great, neither does it appear fo well to the eye, and requires much more mafonry than is neceffary; to which may be added, that this great weight requires larger foundations for the piers, and often caufes them to fink when the foil underneath is not very hard and folid, as experience has fufficiently fhewn.

I do not know what can excufe an architect, who makes ufe of circular arches in bridges, when it is known that they require fo much more mafonry than is neceffary; fince an elliptic arch is as eafily defcribed upon boards with a ftring about two points as a circular arch about one, neither

xii $\quad P \quad R \quad E \quad A \quad C . E:$

is there any greater difficulty to trace the joints in one than in the other, nor in the making patterns for cutting the arch-ftones: therefore the pretended difficulties which fomebuildersalledge; to be met with in the conffruction of elliptic arches, are frivolous and trifiling, in comparion to the many advantages they have over all others.
If the arches of Weftminfer-bridge had been made elliptical; and fo as that their heights had been two thirds of what they are now; then the gaeat or middle arch, which is 76 feet wide, and 3^{8} feet high, would have been reduced to the height of 25 feet 4 inches only, and the reft in proportion; the quantity of mafonry contained in the arches would have been diminifhed by one third, and the flope above, which is fo confiderably fteep, and makes the bridge appear fodifagreeable to the eye, would have become quite eafy.
In order to explain the feveral problems given for different arches, and to make their application plain and eafy; I have given examples in numbers of every one, and for the fake of faving trouble to the builders, I have computed a table of dimenfions for piers of powder magazines, from 6 to 24 feet high, wherein the fhock of the fhells that may be thrown upon them has been confidered: as thefe dimenfions agree very nearly with thofe which Mr. Vauban has ufed in the conftruction of feveral magazines; and thefe magazines have never failed in any fiege, though many thoufands of fhells have fallen upon them, as has been related; the reader may depend upon the dimenfions we have given in our table.

The

$\begin{array}{llllllll}P & R & E & F & A & C & \text { E. xiii }\end{array}$

The third fection contains the theory of timber, a fubject of no lefs importance to an engineer than any of the former; fince thereby he is informed, how to place every piece in its beft pofition, and what dimenfions they ought to have, fo as the whole frame fhall be equally ftrong in every part, without ufing more timber than is neceffary. After having determined the proportion between the frength of fcantlings of the fame or different forts of timbers, placed any how, and which have different dimenfions; I give feveral tables of dimenfions for girders, joifts, principal rafters, and other pieces ufed in buildings, made of oak or fir, adapted to large and fmall buildings; and from thence it is Chewn, that the dimenfions given by architects, bear no juft proportion to each other.

As moft of ourfarchitects make the oak fcantlings of larger dimenfions than thofe of fir, which are to fupport the fame weight; and as Mr. Parent, formerly of the Academy of Sciences at Paris, is faid to have made feveral experiments on the ftrength of timber, and found that the ftrength of fir fcantlings is to the ftrength of oak fcantlings of the fame dimenfions, as 6 to $5:$ I was induced to make fome experiments myfelf, in order to confirm, or'fhew the fallity of a fuppofition fo improbable. By thefe experiments I found, that the ftrength of the weakeft oak I tried, was to the ftrength of the beft fir I could get, as 8 to 7 , and by comparing the beft of each fort, as 3 to 2 ; which differs greatly from the practice of ourarchitects, and the experiments made by Mr. Parent.

In regard to the practice which I have treated of, in the fecond and third parts of this work, fuch

xiv $P \quad R \quad E \quad F A C E$.

as forming a fcheme for building a fortrefs, the manner of tracing the works on the ground, the -preparing and diftinguifhing the materials, the laying the foundations in any kind of foil, the building the walls and ramparts, together with all the military buildings which fall under the direction of an engineer; we fhall refer the reader for thefe to the table of contents; and only obferve here, that nothing has been omitted which I imagined to be of any ufe to the young and unexperienced engineer.

The fourth and laft part treats of aquatic buildings, a fubject more copious, and no lefs neceffary to be underfood by an engineer than any yet men \rightarrow tioned: for few fortreffes are now-a-days built but what are fituated near navigable rivers, lakes, or the fea, for the benefit of trade and navigation; confequently bridges, harbours, fluices, and aqueducts are immediately connected with them, and are to be built by the fame engineer who directs the works of the fortrefs; for which reafon, I have endeavoured to affift him as much as the fhortnels of the work will admit of.

This part begins with the defcription of ftonebridges, where, after having treated of their fituations, and other previous precautions to be taken before the dimenfions are fixed upon; I give 2 problem for determining the thicknefs of piers of any height, when the width of the arch is given; and from thence I have conftructed a table, containing the thickneffes of piers from 6 to 24 feet high for arches from 20 to 100 feet wide, which no author has yet done: It is true, Mr. Belidor has given a rule for finding the thicknefs of piers which
are fix feet high: but as this rule ferves in one cafe only, and isdeduced from practice, and not grounded on theory, nor any fubftantial reafons; it is evident, that no great dependence can be had thereon. Then I defcribe various methods for laying the foundations, either with batardeaus, coffers, or other contrivances, in different depths of water, and in any kind of foil; and alfothe manner of carrying on the work from the beginning to the entire finifhing the bridge, with all the fecurity and neceffary precautions we could think of.

After this I treat of harbours, a fubject of great importance in a trading nation like this, to preferve not only the royal navy in formy weather, but likewife afford an afylum for merchantmen in diftrefs; though there have been feveral built in different parts of Europe in later times, yet we are very much in the dark in regard to a method whereby we may proceed in all kinds of fituations. Very few directors of thefe works have thought proper to communicate their proceedings to the public. Mr. Belidor is the only author who has written particularly upon this fubject; but as in moft parts of France fones are in great plenty, whereas they are generally very fcarce in the greateft partof this country; the method which the French chiefly follow can be but of very little ufe here: it is true, this author has given feveral others, that may be ufed in moft fituations, which I have taken care to infert in this work, and have added fuch others as I imagined might ferve upon thofe occafions where his could not be applied.

I have endeavoured to be as particular as poffible, in the preliminary enquiries to be made before arefolution is taken to fix upon the fpot of ground
$\begin{array}{lllllll}\text { xvi } & P & R & E & F & A & C\end{array}$
for making a harbour; as likewife in the choice of the materials to be ufed; in placing the entrance of the harbour, fo as the fhips may enter in ftormy weather, and fail out when fair; in the manner of laying the foundations in any kind of foil, in that of carrying on the work; and finally, in examining into the proper thicknefs which the piers ought to have, in order to refift the waves, and at the fame time be convenient for lading and unlading fhips whenever it fhould be found neceffary.

To illuftrate what has been faid, I have given the plan and fection of a pier made of ftone or brick, together with the plan and fection of one of wood, both which have formerly been propofed for inclofing a harbour to be built at that time, As it was faid that the funds allowed were not fufficient to build the piers with ftone, I propofed to lay the foundation only with fone, and to finifh the reft with bricks, frengthened at every eight feet high, with a courfe of fones crampt together; or, if this method was yet too dear, to build the piers with wooden frames, in the manner given here; but an objection was made that brick would foon be deftroyed in faltwater; though it may be proved that when they: are well burnt, fuch as thofe called clinkers, they are more lafting than Portland fone: For at Portfmouth, the foundations on the fea fide built with this ftone, are made quite hollow, and worn away by the motion of the fea-water; whereas the bricks ufed at Woolwich wharf, at Cbatbam dock, and at Dover harbour, befides fome others. to be met with in Holland, are not the leaft damaged, though they have been laid there many "ears.

What

$\begin{array}{llllllll}\mathbf{P} & \mathbf{R} & \mathbf{E} & \mathbf{F} & \mathbf{A} & \mathbf{C} & \mathbf{E} . \quad \text { xvi }\end{array}$

What has been faid in refpect to laying the foundation, and carrying on the work of piers for harbours, will equally ferve for building wharfs, quays, and flips for docks; fince the one and the other require a continued wall to be made in water; only wharfs and quays are built with lefs trouble, on account of being near the fhore, where the motion of the water is not fo dangerous; and are built but of a fingle wall, which therefore is made ftronger, and fecured with land-ties; to prevent its being thruft out by the heavy burthens generally laid upon them.

The work concludes with the manner of building fluices and aqueducts, a fubject too copious to be treated fo fully as it ought to be in fo fmall a work as this; however, the manner of fecuring the foundation with common and dove-tail piles has been fully explained, as well as that of making the wooden frames and floors which are laid upon them; and how the mafonry is to be carried on in the fecureft manner. That the reader may be enabled to procced upon all the various occafions, which may happen in practice, I have given a general conftruction of a large fluice with a double pair of gates, in fuch a manner as to be applicable to the moft effential cafes, by changing a few particulars, which may vary in certain circumftances; I have likewife fhewn how to determine the moft advantageous pofition of the gates, and given the dimenfions of the feveral pieces of which the gates of fuch fluices are compofed, whofe width are from 8 to 48 feet; as likewife the irons made ufe of to fix and fecure them: in fhort, nothing effential has been omitted, which might any ways contribute to the reader's fatisfaction.

If it be confidered, that canals for navigation are made from one end of a country to the other, overhills and valleys, by means of fluices and aquedutts; that harbours are formed and cleared from the fand and fhingle driven in by the water; low and marhy lands dried and made arable, as likewife dry and barren lands fupplied with a proper moifture to make them fruitful; countries are defended againft a powerful enemy by forming inundations; towns fupplied with water: and if to this we add, the excellent ufe of fluices in the attack and defence of places, fo well defcribed by Mr. Belidor, whereby a fortrefs may be made almoft impregnable; whoever confiders all thefe things, will find, that no works directed by an enigneer, require a more extenfive knowledge, both in theory and practice.

I have endeavoured throughout the whole work to be as diftinct as I could, in order to make the fubject plain and eafy; but as no improvements can be made in any branch of learning without the help of theory, I fear that many of my readers will not underftand the moft effential parts of this work, which it was not in my power to treat of otherwife; I would therefore advife the learner to begin to ftudy my Elements of Matbematics, which were compofed chiefly for military gentlemen, and to ferve as an introduction to works of this kind.
As I am fenfible, that, for want of being thoroughly acquainted with the Englifb Language, many grammatical errors are to be found in this work, notwithftanding all the poffible care that has been taken; I hope for the reader's indulgence in this refpect.

Table of CONTENTS.
 PARTI.

Sect. I. The theory of Walls, I.Prob. I. To findthe prefure of theearth againft a wall, 3.II. To find the thicknefs of a wall, fo as to re-fift the prefure of eartb,Of Counterforts.5.
III. To find the thickness of a wall with counter-forts, fo as to refit the prefjure of eartb, 8.
Table. Containing general rules for finding thetbicknefles of fone and brick-walls, 12.
Prob.IV. To find the tbickneffes of walls tbat baveparapets,13.
General Rules; for finding the tbickneffes of fone- walls with parapets, 14.
Prob. V. To find the tbickneffes of a wall tbat fup-ports a parapet of earth above it, 16 .
Four Tables; Containing the tbickneffes of fone andbrick.walls, with or without parapets,wuben the angle made by the natural Jopeof eartb is 45 degrees,16.
Prob. VI. To find the tbickneffes of a wall when the counterforts bave a fope, 20.1
FourTables; Containing the tbickneffes of fone and brick- walls that bave a parapet of earth above tbem, and tbe natural Jope of eartb make an angle of 45 degrees, 20.
Pfob. VII. Let the prefil of a wall be a parallelogram,and the counterforts a trapezium, to findthe thicknefs of the wall wemen there is aparapet of eartb above it,22.
Sect. II. The theory of Arches, 25.Prob. I. To find the prefure of an arch againft thepiers tbat fupport it,b 2. Prob. II.

xx CONTENTS.

Prob. II. To find the tbickne/s of the piers when the arcb is terminated by two concentric circles de-- fribed from a center placed in the line which pafles tbrougb the fpring of the arch,30. III. To find the thicknefs of the piers, when the outfde is a right line perpendicular to the radius which bifects the quadrant, $\quad 3^{20}$
IV. To find the tbicknefs of the piers woben the infide is a right line parallel to the outfide, 34 -
V. To find the tbicknefs of the piers, when the arcb is terminated by two circular arcs, defribed from the fame center below the line which paffes tbrougb tbe fpring of the arch, 34 .
VI. Te find the tbickness of the piers, weben the outfide is a rigbt line parallel to the chord that fubtends tbe arc.
VII. T'o find the thickness of the piers, when tbe
VII. To ind the thickne/s of the piers, when the
arcch is terminated by two circular arcs de-
fribed from a center placed in the line paf-
VII. To ind the thickne/s of the piers, when the
arccis is terminated by two circular arcs de-
fcribed from a center placed in the line paffing tbrougb the fpring of the arck,
VIII. To find the tbickness of the piers, when the outfide is a right line parallel to the chord of the infide arc,
Lem. I. The diameter which bifects tbe chord joining the extremities of the two femi-axes of an ellipfis, bijects the area of the quadrant, 4.r.
Prob. IX. To find the tbickness of the piers, when the arcb is terminated by two fimilar ellipfes, and the joints are perpendicular to the tangents,
X. To find the thicknefs of the piers when the outfaie is a right line parallel to the choxd. whbicb fubtends the elliptical quadrant, 44.
XI. To find the thicknefs of the piers when there are counterforts, the infide of the arch being circular, aud the outfide a rigbt line, 46.
Table. Containing the thicknefles of the the piers of powder-magazines,
Prob. XII. To find the thicknefs of tbe piers having counterforts when the infide is an ellipffs, 49:

CONTENTS: xxi

Prob.XIII. To find tbe tbicknefs of tbepiers of a circumlar arch, woben there is a wall abave the piers, as it bappens over the gates of a fortress,
XIV. To find the thickness of the piers when the arch is elliptical, the reft being the § me as before,
XV. To find tbe tbickne/s of the piers of a circular arch, wben they bave a flope on the outfide,
XVI. The fame thing being fuppofed, to find the tbicknefs of the piers, when the arch is elliptical,
XVII. Suppofe a wall to be continued above the
arch witb a yiven fope on the outfide, to
find tbe tbicknefs of the piers,
XVIII. To find tbe tbickne/s of the piers when there is a preffure of earth on the outfide,
XIX. To find the thicknefs of the pier, with counterforts, when thereare two circular arches below, and a fmall one above,
XX. To find the tbickne/s of piers with counterforts, when there are two fmall arches below, and a great one above them,
XXI. Let eitber the interior or exterior curve of an arch be given, to find the otber fuch, that all the arcb-fones foall be in.equilibrio witt each otber,
XXII. To confrult the exterior curve of an arch ${ }^{5}$ swben the interior one is given,

Sect. III. Of the frength and quality of Timber,

Of the nature and quality of Timbers, 64

Prob. I. To determine the ftrength of a fcantling wbofe dimenfions are given,

[^1]
xxii
 CO NT E NT S.

Tables. Containing the dimensions of fir joifts common and trimming, 80.

Containing thedimenfions of fro bridging-jojfts,8ı
Containing the dimensions of tie-beams and principal rafters, 82.

Containing the dimension of small rafters, 83 .
Prob. II. To find the weight a scantling will bear, which is fu/pended any where between the points by wobich the scantling is supported, 85
III. It is proposed to cut the frongeft rectangular scantling out of a tree that is pofible, 87:
IV. If a flatling be supported at the ends by two blocks, not placed in the fame horizontal line, and the weight fupended in the midale; to find the frengbth of this scantling, 89. V. To find the Arength of a principal rafter, So as to be proportinal to that of the ticbeam,

$\mathbf{P} \quad \mathbf{A} \quad \mathbf{R} \quad \mathbf{T} \quad$ II.

Containing the Knowledge of the Materials, their
Properties, Qualities, and Manner of using them,
Sect. I. Of the quality of fines, fuck as are used in building,
ibid.
II. Of Bricks, 99.
III. Of Lime, 104.
IV. Of Sand, Terrafs, and Pozolan, 107.
V. How to prepare and make Mortar, 11 I .
IV. Of Plaifer,
116.

PA R $\quad \mathbf{T} \quad$ III.

Containing the Manner of tracing a Fortress on the Ground, to make an Effimate, and to exccute the work.
Sect. I. Shewing the ufefulnefs and necefity of building fortreffes, 118.

CONTENTS. xxiii

Cect. II. Of tbeir fituations,
III. Obfervations relating to the fituations of 122.
places, IV. How to make a plan of a fortrefs, 124.
V. To make an eftimate of a fortrefs, 13.5 .

To compute the quantity of mafonry, ibid.
To compute the excavation of the ditches, $\mathbf{1} \mathbf{4} \mathbf{1}$. VI. To trace the plan of a fortrefs on the ground,
To trace the plan of a fortrefs voith a plain table,
To trace the plan of a fortress on the 148.
ground with a theodolite,
To trace the covert weay on the ground, ${ }^{1515}$.
VII. The metbod of building a fortrefs, ${ }^{\text {Of }}$, 156 .

Of the foundation and manner of laying tbem, 158.

How to carry on tbe works of a fortrefs, 167. VIII. Metbod to be obferved in making mafonry,
XI. Of cazements, and aill forts of under-
$\begin{array}{ll}\text { ground works, } & 174 . \\ \text { X. Of fally-ports, } & 178 .\end{array}$
XI. Of cazemats in the ravelin, 18 I .
XII. Of cazemated flanks, 187.
XIII. Of caponiers, 188°.
XIV. Of town-gates and guard-boufes, $\quad 189$.
XV. Of bridges in general,

Of draw-bridges,
195.

Of fixed or immoveable bridges,
ibid.
XVI. of barriers, gates, and portculifes, 199.
XVII. Of centry-boxes, and necefary-boufes, 205.
XVIII. Diftribution of boufes and freets, 206.
XIX. Of powder-magazines, 213.
XX. Of barracks, bofpitals, and forc-boufes, 220.
XXI. Of framing timbers for partition-walls,
floors, and roofs,
227.
XXII. Of flooring, - 230.
XXIII. of rcoinnos,
236.

Of ceiling,
 243.
 Of wainscoting,
 ibid.
 Of boufe-painting,
 244.
 Of tyling-roofs 245.

$\begin{array}{lllll}\mathbf{P} & \mathbf{A} & \mathbf{R} & \mathbf{T} & \mathrm{IV} .\end{array}$

Of AQUATIC BUILDINGS,

> Sect. I. Of fone-bridges, Prob. To find the thickness of the piers of a ${ }^{248 \text {. }}$ bridge,

Table, Containing the dimensions of the piers
from a a arch of 20 to 100 feet wide, 255. How the work is to be carried on, $\quad 260$. How to build in water with coffers, 264 .
Sect. II. Of barbours, 272.
III. Of Juices and aqueducts, 285 .

To confruct the plain of a Juice, 286.
Observations on this confruction, 288.
Of the timber-gates under the floor and $\begin{array}{ll}\text { foundation, } & 292 . \\ \text { Of aqueducts, } & 296 .\end{array}$
$E \boldsymbol{R} \boldsymbol{R} A \boldsymbol{T} A_{0}$

N.B. The Numbers as in the Boole are conformable to the Firf Edition of Elem. Math. and thole corseted to the New.

A
 TREATISE

 CONTAINING
The Practical Part

$$
0 \mathrm{~F}
$$

FORTIFICATION.

S E C T. I.

The Theory of WALLS.

IN order to have a clear idea of what follows in regard to the theory of walls, it is neceffary to explain the fuppofitions, on which its veracity depends. Thus we fuppofe that if new-made earth, fuch as in ramparts, was not fupported by a wall, the particles would loofen from each other by the dampnefs of the weather, and tumble down fo as to make a nope nearly in a plane furface, which plane is called the natural llope of the earth; and is fuppofed to have always'the fame inclination in the fame fort of foil.

The fecond is, that the wall is fo well cemented, as if it were made of one fingle flone, as far as its foundation, fo that, if a fufficient power was applied to any part of it, it would break
off near the foundation, and would turn in the fame manner as if it was compofed of one ftone only.

The firft of thefe fuppofitions may be proved in this manner; fince whatever obliquity is required for one particle to tumble down, the fame will alfo be required for any other of the fame weight and tenacity, and therefore the fum of all the particles tumbled down, will form a plane furface nearly, which has always the fame inclination in the fame fort of foil, but will vary according as the foil has a greater or lefs tenacity. For example, fand will form a greater flope than common earth, and this a greater than loam or clay.

It may be faid, that all the particles of the fame fort of foil have not the fame magnitude, as may be feen diftinctly in fand, and therefore what we have faid is not abfolutely true: but though it is impoffible to determine this fubject according to a methamatical ftrictnefs, yet it is fufficiently exact for common practice, where fo great a nicety is not required, nor neceffary.

As to the fecond fuppofition, if we confider that the wall is always built a twelve month, or ought to be fo, before the earth is laid againft it, it has time to dry well, before any preflure is made againft it ; befides fmall branches of wood are mixt with the earth to leffen its preffure: and though the wall is joined as firmly to its foundation as in any other part, yet this is advantageous to the refiftance of the wall; and the fuppofed equilibrium, between the momentums of earth and the wall, is not ftrictly true, nor ought it to be fo; or elfe the wall would foon tumble down, by the leaft accident that woukd happen.

PROBLEMI.

To find the preffune of earth reprefented by the triangle CDT, againgt the profl ABCD , of a wall, in a direction perpendicular to the vertical line DC. Plate I. FFg. 1.

AS the profil ABCD, and the triangle DCT , reprefent the bafes of folids which have the fame altitude, the weights of thefe folids will be proportional to their bafes; for which reafon we hall confider the areas of the fection $A B C D$, and of the triangle DCT, as fo many weights, which are proportional to them. Since the fum of the momentums of all the parts is equal to the momentum of the whole weight re-united into its center of gravity by art. 422 of our Elem.

It is evident that the weight of the triangle DCT, may be confidered as re-united into its center of gravity S, and the defcent of that center, when the triangle fides along the inclined plane, will be that by which its force againft the wall mutt be eftimated. If therefore S R be drawn perpendicular to the fide $\mathrm{D} C$ of the wall; the whole preflure may be eonfidered as acting againf that point R.

Now becaufe the area of the triangle DCT, is equal to $\frac{1}{2} \mathrm{DC} \times \mathrm{CT}$; if we call T the action of the weight in the direction parallel to the inclined plane DT ; and W the part aeting in the direction $\mathrm{S} R$ perpendicular to DC: we have DT: DC: : $\frac{1}{2}$ DCX C T: T; by art. 499 of our Elements; and DT: CT: : T: W, by art. 501 : and the cornpound of thefe proportions gives $\overline{\mathrm{T}}^{2 /}$: DCXCT: : $\frac{1}{2} \mathrm{DC} \times$ CT: W. Confequently the angle CDT being given the preffure W will be given likewife.

COR.I.

Hence if the height DC of the wall be called $a, \mathrm{D} \mathbf{T}$ unity, and $\mathrm{CT}=s$: then will $\mathrm{W}=\frac{1}{2} s s a a$, by the laft proportion; and becaufe the action along the inclined plane DT, is retarded by the cohefion of the parts, and it has been found by experiments that a body fliding along a fmooth plane, requires one third of its weight to move it; therefore this expreffion ought to be diminifhed in the ratio of 3 to 2 , in order to get the true preffure: Again, the fpecific gravity of ftone is to that of earth as 3 to 2 ; fo that if we will compare the weight of the triangle DCT of earth with the weight of ftone; the expreffion muft be reduced alfo in that ratio: that is, the value of W muft be reduced in the ratio of 9 to 4 , in order to get $\frac{2}{9}$ ssaa for the true preffure.

COR. II.

Becaufe the line SR, is parallel to the bafe AD; SR will exprefs the diftance of the direction SR of the preffure againft the wall from the bafe, or the point fix A, about which the wall muft turn in order to be overfet; and fince DR is $\frac{2}{3} a$, by art. 427 . the product of the weight $\frac{2}{5}$ ssaa, multiplied by the dif tance $\frac{2}{3} a$, gives $\frac{4}{2} 5 s a^{3}$, for the momentum of the earth's preffure.
$N B$. It may be obferved that DT is to CT , as the radius is to the fine of the angle CDT; and therefore, s expreffes the fine of that angle, when the radius is unitv.

PROBLEM II.

Io find the thicknefs BC above of a fone wall ABCD , fo as to refift the preffure of the earth CDT.

Draw BE perpendicular to the bafe AD ; and let the weights Q, P, be fufpended in the centers of gravity of the triangle ABE, and the rectangle E C, and to be proportional to their areas refpectively.

Now becaufe the preffure of the earth endeavours to overfet the wall in the direction $S \mathrm{R}$ or D A , whilf the weights Q, P, retain it in the direction perpendicular to AD : the fum of the momentums of the weights \mathbf{Q}, \mathbf{P}, mult therefore be equal to the momentum of the earth's preffure, in cafe of equilibrio. Hence, if BC or $\mathrm{ED}=x$, and $\mathrm{AE}=n a$; the letter n expreffing an indetermined but conftant quantity; then will $\mathrm{Q}=\frac{1}{2} n a a, \mathrm{P}=a x$; and as the diftances of the weights Q, P, directions from the point A , are $\frac{2}{3} \mathrm{AE}$, $\mathrm{AE}+\frac{1}{2} \mathrm{ED}$; that is, $\frac{2}{3} n a, n a+\frac{1}{2} x$; therefore $\frac{1}{3} n n a^{3}$ will be the momentum of the weight Q , and $n a a x+\frac{1}{2} a x x$, that of the weight P : the fum of thefe two momentums being made equal to $\frac{-4}{2 \pi} s s a^{3}$ the momentum of the earth, and both fides divided by $\frac{1}{2} a$, gives $x x+2 n a x+\frac{2}{3} n n a a=\frac{8}{2}$ ssaa; by adding $\frac{+}{3} n n a a$ to both fides, the firft will be a perfect fquare, whofe root multiplied by 9 , and the other fide by 8 r , is $9 x+9 n a=a \sqrt{ } 24 s+27 n n$.
N. B. Mr. Cotes, in his Hydroftatic lectures, page 61, fays that the fpecific gravity of fone is to that of bricks as 2.5 to 2 ; that is, as 5 to 4 . If therefore we increafe the firft term $24 \mathrm{~s} s$, under the radical fign in the ratio of 4 to 5 , we fhall have $9 x+9 n a=$ $a \sqrt{30 s s+27 n n}$, for the equation which determines the thicknefs above of brick walls.

For example, if the bafe of the wall's flope is one fifth of its height, and the flope of earth makes an angle B. 3
of 45 degrees; then will $n=\frac{1}{3}=0,2 n n=04$, and ss=. 5 : whence multiplying 24 by .5 and 27 by .04 and extracting the fquare root of the fum 13.08 , we get 3.6167 , from which fubftracting 1.8 , and the difference divided by 9 , gives $x=.2018 a$, of $x=\frac{1}{5} a$ nearly in ftone walls. But if 30 be multipled by . 5 , and added to 1.08 ; the fquare root of 16.08 , will be 4.009 nearly ; from which fubftracting 1.8 , and dividing the difference by 9 , we get $x=.245 a$ nearly in brick walls.

Of Counterforts.

I N building walls that are tofupport earth, buttreffes are made behind them at certain diftances from eachother, which are not feen, as being covered withearth; they are made in view to ftrengthen the wall againft the preffure of earth, and to fave expences; for by this means J there is no occafion to make the walls fo thick as they otherwife muft be. Thefe buttrefles, are called Counterforts, in fortification, and are made of various forms.

Plate I. Fig. 2. Suppofe the trapezium ABCD to reprefent the fection of a wall without parapet; then the rectangle DF reprefents the elevation of the Counterfort, which is generally as high or within a foot, as the wall, and the bafe D G the length; and if we confider the plane of the wall; where KLMN, reprefents the bafe of the Counterforts, and NP, their diftance from each other, which may vary at pleafure.

Mr. Vauban made the bafe KLMN of the counterforts always broader at the root K N than at the tail LM, in the conftant proportion of three to two; and the diftance from the center of one to that of the next, 18 feet: On the other hand, Mr. Belidor would have them made the contrary way, that is, narrower at the root $\mathrm{K} N$ than at the tail L M in the fame in verfe pro: portion of two to three; becaufe the center of gravity of the counterfort, being thereby farther from the wall, will fupport a greater weight, than thofe made

Sect. I. FORTIFICATION.

by Mr. Vauban; they are befides not fo eafily deftroyed by cannon, when the wall is beat down, and fo keep better up the earth. But as he imagined that the engineers would hardly change an old eftablifhed practice, for any other ever fo advantageous; he computed his tables according to Mr. Vauban's profil.

We, on the contrary, make the bafe of our counterforts rectangular, partly becaufe our engineers make them fo, and becaufe they are very near as ftrong as thofe made by Mr. Belidor; they tikewife bind better with the wall, and the workmanfhip is cheaper and eafier; fo that in the mean, they are better than thofe of any other form.

Inftead of placing the counterforts at the fame diftance, whether the wall is high or low, as Mr. Vauban does, we make their thicknefs $\mathrm{K} \mathbf{N}$ to their interval N P always in the conftant ratio of unity to three, and their length K L or $D G$, one fourth of the height DC of the wall. From this difpofition of the counterforts, the profils become fimilar, and their thicknefs BC above is in a conftant ratio, with the height D C, when the llope AB remains the fame; as will be feen hereafter; whereby the operations become extremely eafy. And this rule is agreeable to the preffure of the earth, which we have ghewn above to be fimilar in the fame fort of foil.

In a wall of ten feet high, the counterforts, according to Mr. Vauban's general profil, are 3 feet thick and at 15 feet diftant from each other; and in a wall of 80 feet, their thicknefs is 10 and diftance but 8 ; and therefore his counterforts are too far diftant in low walls and too near in high ones; whereas ours may be placed farther from or nearer to each other, according as it is convenient in practice, provided the proportions mentioned above are obferved.

It may be obferved, that the longer the counterforts are the greater force they have to refift the preffure of the earth; but when they are made to narrow, they do B 4
not bind fowell with the wall; for which reafon, I weuld make their thicknefs never lefs than half their length. For inftance, in a wall of 40 feet high, the length of the counterforts will be ofeet, according to the proportion mentioned before: their thicknefs ought, in my opinion, to be no lefs than 5 feet, and then their diftances from each other will be 15 feet; but in a wall of ten feet high, their length will be two feet fix inches; and their thicknefs ought to be two feet; then their interval will be fix; whereas if they were made thinner, they would fand too clofe to one another.

PROBLEM III.

To find the thicknefs above, of fone walls wabich bave counterforts, fo as to refil the preflure of the eartb. Fig. 2.
Becaufe the length DG of the counterforts is a fourth part of the height DC; the area DF will be $\frac{1}{4} a a$, and $\mathrm{AD}+\frac{1}{2} \mathrm{DG}$, that is, $x+n a+\frac{1}{8} a$, will be the diftance of its direction from the point A ; therefore $\frac{1}{7} a a x+\frac{2}{4} n a^{3}+\frac{1}{3} a^{3}$, will be the momentum of the counterfort : but as there is an interval between them, and therefore is too much by that interval, or as but one part in four is taken up by the counteforts, this momentum muft be divided by 4 in order to have $\frac{1}{16} a a x+\frac{1}{2} n a^{3}+\frac{1}{15} a^{3}$, for the true momentum; which being added to that of the wall found in the laft problem, and their fum made equal to that of the earth, when divided by $\frac{1}{2} a$, gives, $x x$ $+2 n a x+\frac{1}{8} a x+\frac{2}{3} n n a a+\frac{1}{8} n a a+\frac{1}{67} a a=\frac{8}{2 \pi}$ ssaa: if we add $\frac{1}{5} n n a a-\frac{75}{84} a a$ to both fides, the firft will be a perfect fquare, and the fecond reduced under the fame denomination, whofe common denominator is 81×64; then the firt fide multiplied by its root 72 , gives $72 x+72 n a+4.5 a=a \sqrt{1536 s s-}$ $60.75+1728 n n$ for the general equation which determines the value of x in ftone walls: But if we increate
the firt term 1536 ss under the radical fign, in the ratio of 4 to 5 , as has been fhewn in the laft problem, we get $72 x+72 n a+4.5 a=a \sqrt{1920 \text { ss- } 60.75}$ $\overline{1728 n n}$, for the general equation which determines the value of x, in brick walls.

Hence it is manifeft, that when the fine s, and the value of n are known, the thicknefs above x of the wall, will be always expreffed by parts of a, the height of the wall; and from thence, general rules may be found for all the different hopes that commonly are given to walls, and for any angle the nope of earth makes with the vertical line D C, as will appear by the following examples.

Let the bafe A E of the flope be one fifth of the height D C, and CD T an angle of 45 degrees: then will $n=\frac{1}{3}=.2$, and $s s=\frac{1}{2}$; thefe values being fubftituted into the firft equation gives 776.37 for the quantity under the radical fign, whofe fquare root is $27.863 a$; from which fubtracting the fum $18.9 a$, of the two known terms, and dividing the difference by 72 , we get $x=.1245 a$, or $x=\frac{1}{8} a$ nearly in fone walls.

But if we fubltitute the values of $s s$ an n, into the fecond equation, we get 968.37 for the fum of the terms under the radical fign, whofe fquare root is 3 I . 118a, from which fubtracting the fum 18.9a, of the two known terms, and dividing the difference by 72°, we get $x=169 a$, in brick walls.

If the bafe A E of the flope is one fixth, and the angle CDT, 45 degrees: then will n equal $\frac{1}{6}$, ss $=\frac{1}{2}$; thefe values being fubftituted into the firft equation gives 755.25 for the fum of the terms under the radical fign, whofe fquare root is 27.48 Ia , from which fubtracting the fum $16.5 a$ of the two known terms, and dividing the difference by 72 , we get $x=.153 \dot{a}$, in ftone walls.

But if the fame values of n and $s s$, are fubftituted into the fecond equation, we get 947.25 , whofe fquare
root is $30.777 a$, from which fuburacting the fum 16. 5^{a} of the two known terms, and dividing the difference by 72 , gives $x=.198 a$, in brick walls.

Again fuppofe the angle of the flope D T to be 30 degrees, then will $s=.5$; and $s s=.25$: thefe values being fubfituted into the firt equation, give 3^{84}, for the firft term under the radical fign, and by fubftituting that value in the fecond equation, we get 4^{80} for that term.
Now if $n=.2$; we get 392.37 for the fum of the terms under the radical fign, whofe fquare root is 19 . 808, and hence $x=.013 a$, nearly in ftone walls; and in brick walls, we get 488.37 for the quantity under the radical fign, whofe fquare root is 22.099 , and hence $x=.044$ a nearly.

Becaufe the fum of the fquares of the fine and cofine of any angle is equal to the fquare of the radius; if we fubtract the fquare 25 of the fine of 30 degrees, from the fquare of the radius or unity, we fhall have. 75 for the fquare of the fine of an angle of 60 degrees.

Whence, fubftituting this value into the firft equation, we fhall have 1152 for the firft term under the radical fign, and by fubftituting the fame value into the fecond, we get 1440 for the firft term under the radical fign.

Now if $n=.2$; then will 1160.37 be the fum of the terms under the fign, whofe fquare root is 34.064 , and hence $x=.211 a$, in fone walls, and 1448.37 , will be the fum of the terms under the fign, whofe fquare root is 38.057 : and therefore $x=.266 a$, in brick walls. When the Iope of earth D T makes any other angle, the operations become more tedious; and in that cafe the values of s, are to be taken out of the tables of natural fines; and it will be fufficient to take only the three firft numbers.

But to fave the trouble to practical engineers, we have computed the values of x, when the hope is $\frac{1}{3}, \frac{1}{6}$, $\frac{1}{7}, \frac{1}{8}$; for both ftone and brick walls; and when the

Sect. 1. FORTIFICATION.
Iope D T of earth makes an angle from 30 to 80 degrees for every 5 degrees, which we imagine to be fufficient, as may be feen in the following table, where the fractional numbers in the firt horizontal line exprefs the ratio of the bare A E of the waH's flope to the height of the wall; the firf vertical column fhews the angles which the llope of earth makes with the vertical line DC: and the other numbers give the ratio of the thickners of the wall; or the values of x, to its height, which numbers are all decimals.

Example, If the bafe A E of the Iope is one fifth of its height, and the angle CDT, 45 degrees; then the number oppofite to 45 and under $\frac{1}{5}$, is 125 , which being multiplied by the height of the wall, fuppofe 30 feet, gives 3.750 , or 3 feet 9 inches: fuppofe the angle CDT, to be 60 degrees, and the bafe of the flope one fifth; then the number 211 oppofite to 60 and under $\frac{1}{9}$, being multiplied by the height of the wall jo feet, gives 6.330 or 6 feet 4 inches nearly.
N. B. It muft be obferved once for all, that we always take the neareft number in all our computations. Thus if the fourth decimal is either 5 or above we always increafe the third by unity; the fame thing is to be obferved in regard to inches: for in the laft example .33 , multiplied by 12 , gives 3.96 inches, which is 4 inches nearly.

GENERAL RULES

For Stone walls.

Ang	$\frac{1}{5}$					$\frac{1}{6}$	$\frac{1}{7}$	
	27		36	34	33^{8}	308	389	
75	265	29	31	33	327	35	378	395
70	25	28	301	21	311	340	362	378
65	235	26	283	299	290	32	34	358
60	2.11	23		27	266	296	314	333
55	19	214	23	25	23	267	28	30
50	153	185	202	22	205	23	25	271
45	125	153		18	16	198	2.19	235
	089	117		153	13			,
,	052	079	093	114	087	110		15
30		038	05				09	

As the bafe of the flope is never lefs than one eighth nor greater than one fifth of the wall's height; we thought it needlefs to carry thefe general rules any farther, which however may be done by means of the two preceeding equations, whenever it is thought neceffary.

To find the general rule for any intermediate angle fay, As 5 degrees is to the difference between the given angle, and that next to it in the table, fo is the difference between the numbers in the table oppofite to the angles next below and above the given angle ; the fourth term added to the neareft number if above it, or fubftracted if below, gives the number fought. Thus the angle being 53: fubftract it from 55, lubfract the number 153 of 50 from the number 191, which gives 38 . Then fay, $5: 2:: 38: 15$; and 15 fubftracted from the number oppofite to 55 , which is 191 gives 176 for the number fought.

The

The firt and fecond tables have been computed from the general rules, when the flope of earth makes an angle of 45 degrees, which is moft commonly the cafe in a middling foil, and is what Mr. Belidor and others have fuppofed; fo that if any error fhould have been committed in thefe tables, they may be corrected by the laft rules, and if the height of a wall, not expreffed in thefe tables, fhould be given, whofe thicknefs above being required, it may be found. Thus if the given height be 35 feet, and the flope one fifth; multiply that height by 125 , which gives 4.375 feet or 4 feet and 4.5 inches for the thicknefs required in a ftone wall.

The thicknefs near the foundation, is found by adding the bafe of the nope to the thicknels above; thus when the bafe of the lope is one fifth, and the wall 30 feet heigh, then one fifth of 30 is 6 , to which add the thicknels above 3 feet 9 inches, and the fum 9 feet 9 inches will be the thicknefs required. It is to be obferved that the length of the counterforts, in thefe tables, is always one forth of the wall's height as has been mentioned before, and their thicknefs is to their interval as unity is to 3 .

PROBLEMIV.

To find the thicknefs of walls wbich bave parapets, according to the thirdprofil. Fig. 3.

- In walls with parapets, the flope \cdot A B of the wall is always terminated by the cordon B, within four feet of the top F, and the upright wall BFHI, never exceeds three feet in thicknefs; and the part HI, is always terminated by the line DC produced, when BC does not exceed three feet.

If the upright part I F of the wall was fufficient to refift the preffure of the earth, above the line BK produced; there need be no other tables than thofe
already given ; but as this is not the cafe; the preffure of the earth above the line BK fhould be computed as well as the refiftance of the wall IF, in order to have the true folution of the problem: But this would make the work more tedious, than is neceffary in practice, and therefore we fhall eftimate this force in an eafier manner, and which anfwers full as well.

Suppofe the wall ABCD to be carried up quite to the top F, and fo as to be fufficiently ftrong to refift the preflure of the earth, and from thence the thicknefs at $B C$ is to be found; then I fay, that the frength of the whole wall will be fufficient to refift the preffure of the earth.

For the earth above the line BC, extends not above 18 feet, that is very little farther than the parapet $\mathrm{F} \mathbf{N}$ reaches; and therefore the part IF of the wall will nearly be fufficient to refift the preffure of that earth 3 and as BC is more than it hould be, were the earth no higher than B C, it is plain that the wall thus determined will refift the preffure of the earth more than is fufficient: befides this agrees perfectly well with Mr. Vauban's profil of 30 feet high, that has been ufed in above 50 places without having ever failed.

Now becaufe the height BE is to the bafe E A of the flope as the height BF, or 4 feet, is to the difference between the thicknefs at B and that at F; that is, as AE is $=n a$, $\mathrm{BE}=a$; we have $a: n a:: 7: 4 n=$ to the difference required, which therefore being added to the thicknefs at F, found in the preceding tables, anfwering to the height E F, gives the thicknefs B C required.

GENERAL RULES.

If the bafe A E is one fifth of the beight B E ; then $4 n$ becomes .8 or 9.6 inches, which is to be added to the thicknefs in the fecond Column.

If A E is one fixtb of $\mathbf{B E}$, than will $4 n$ become $\frac{4}{6}$ or 8 inches, which is to be added to the thicknefs in the fourth column.

If AE is one feventh of BE ; then weill $4 n$ become $\frac{4}{7}$ or 7 incbes nearly, subich is to be added to the thicknefs in the fixtb colkms.

Lafly, ff A E is one eigbth of BE; than $4 n$ becomes $\frac{4}{8}$, or 6 inches; whicb is to be added to the thicknefs in the eigbth column.

By thefe general rules the third and fourth tables have been conftructed, the lengths of the counterforts in the tenth column, are the fourth part of the total height; though they are never carried higher than the cordon : But it muft be obferved, that the numbers in the firft column, exprefs the heights, from the foundations to the cordon B only; becaufe the height BF, of the upright part is always 4 feet in all walls whatfoever, that have parapets.

To hew by a few examples how the preceding general rules are applied; we thall fuppofe the height E.B of a ftone wall to be 30 feet, and the bafe AE one fifth of that height : then adding 4 feet to 30 we get 34 feet for the total height EF; and the thicknefs found in the fecond column of the firft table, anfwerting to 34 feet, being 4 feet 3 inches 3 to which adding 9.6 inches by the firt rule, gives 5 feet and .6 of an inch, for the thicknefs required. Mr. Vauban makes this thicknefs 5 feet; fo that ours does not exceed his but by half an inch nearly.

If a ftone wall is 24 feet high, and the bale of the nope on fixth; then 4 feet added to 24 gives 28 feet; and the thinknefs anfwering to this height in the fourth column of the firtt table is 3 feet 6 inches; by adding 8 inches according to the fecond rule; then the fum 4 feet 2 inches will be the thicknefs at BC.required.

Thus we have given tables not for ftone walls only, but likewife when they are built with brick; and their
conftructions are deduced from the mortt fimple principles, and at the fame time the moft general that could have been thought of, and thofe general rules we have given for the different angles the llope of earth makes, are of excellent ufe in practice; for it is eafily perceived, that when the foil is of a ftrong nature, fuch as loam or clay, a great deal of mafonry may be faved, and when the foil is fandy, how to proceed with method and fafety, which cannot be done without them, or by guefs only.

PROBLEM V.

To find the thicknefs above, of a fone wall wibich fupports a parapet of eartb above it, according to the fourth profil. Fig. 4.
We fhall for conveniency fake, fuppofe the flope C G of earth to be parallel to DH, that which the earth forms; though this is not always the cafe in practice, yet the difference arifing from thence is inconfiderable.

Let the vertical line D C produced, meet the horizontal one GH in F ; if $\mathrm{DC}=a, \mathrm{DF}=b$, and the reft as before; then if from the momentum of the triangle D F H, which has been found in Cor. 2. after the firft problem to be $\frac{4}{2} \tau s b^{3}$, we fubtract the momentum of the triangle C F G, we fhall have the momentum of the earth.

Now as $\mathrm{CF}=b-a$; the preffure of that triangle will be $\frac{2}{9} \times s s \times \bar{b}-a^{2}$, by Cor. 1. after the firft problem; and fince the diftance of the line of direction drawn from the center of gravity of this triangle perpendicular to DF , from the point fix A , is $\mathrm{DC}+$ ${ }_{5}^{2} \mathrm{CF}$, or $\frac{a+2 b}{3}$; and the product of this diftance multiplied by the weight, gives $\frac{2}{2} \frac{1}{2} s s \times \overline{2 b^{3}-3 a b b+a^{3}}$ for the momentum of that triangle; which therefore being fubtracted from $\frac{4}{27} s b^{3}$, gives $2_{2}^{2} \leq s \times 3 a b b-a^{a^{3}}$. Now

	T8 Wa
	Then the
ricioh	$\begin{aligned} & \text { Thichor } \\ & \text { aboug } \end{aligned}$
$\begin{aligned} & \text { Feet } \\ & 10 \end{aligned}$	7
12	$1: 0$
14	1:
16	2:
18	2 :
20	2 :
22	2 :
24	$3:$
26	3
28	3
30	3
32	4 :
34	4:
36	4 : 0
38	4 :
40	5
42	5
44	5:
46	5
48	6
50	6 :

wions of Brick? 'othe Sccond Profil			
$x \dot{\omega}$	Whenctle	Slopeis $\frac{1}{8}$	Jugy.
$\begin{aligned} & i c k n{ }^{\prime} \\ & \text { lonv } \end{aligned}$	Thichur: aboue	Thiclon. uclon	$\begin{aligned} & \text { Tould. of } \\ & \text { aliouing: } \end{aligned}$
$\begin{gathered} \mathrm{In} \\ 8 \\ \hline \end{gathered}$		$\begin{array}{rr} 7^{2} \\ 5 & : \\ \hline \end{array}$	$\begin{gathered} F \cdot{ }^{r} \\ 3: 6 \\ \hline \end{gathered}$
4	$4: 3$	$6: 3$	4:0
: 1	$4: 9$	7 : 0	$4:$
10	$5: 2$	$7: 8$	5
8	$5: 8$	今 : 5	5 :
3	$6: 2$	$9: 2$	$6: 0$
0	$6: 7$	9:10	$6: 6$
9	$7: 1$	10:7	$7: 0$
$\because 5$	$7: 6$	11: 3	$7: 6$
2	8:0	12:0	8:0
: /1	$\mathcal{S}: 5$	12: 8	9:6
8	$\bigcirc: 11$	13: 5	$9: 0$
4	$9: 5$	14: 2	9:6
1	9:11	14:11	10:0
:10	10:4	15:7	10:6
: 6	10:10	16: 4	/1 : 0
: 3	11: 4	17:1	11:6
0	11: 9	17: 9	12:0
: 9	12:3	18:6	12:6
: 5	12:9	19:3	13:0
1	13: 2	19:11	13: 6

Sét. í. FOŔTÍFICATIOON.
Now becaufe the momentums of the wall and counterfort are the fame here as in the third problem, if we divide the momentum of earth by $\frac{1}{2} a$, and multiply by 3×64, we get 768 ss $\times \frac{b b-a}{}$ a which being. fubtituted inftead of the firft term under the radical fign in the equation of that problem we get $72 x+$ $72 x a+4.5 a=\sqrt{768 s 5 \times 3 b b-a a-60.75 a a+}$ $17: 8 n n a a$, for the equation which determines the unknown quantity x in this cafe.

When F.C becomes $=0$, that is when there is no parapet of earth above the wall; then will $a=b$, and the Jaft equation becomes the fame as that in the third problem.

If the bare A E of the hope is one fifth of the height EB; and the angle CDH 45 degrees; then will $n=.2$ and $s s=.5 \vdots$ and the equation above becomes $72 x+18.9 a=\sqrt{1152 b b-375.63 a a}$, in this cale; but if the bafe A E be one fixth of the height B E; and the angle CD H, the fame as before, we get $72 x+$ $16.5 a=\sqrt{1152 b b-396.75 a a}$.

By means of thefe two laft equations, the fifth and fixth tables have been conttructed; 'which contain the ratio's between the height of walls and their thicknefs above : they fhall be explained by a few examples.

Let the height of a tone wall be to that of the earth above it as 3 to 2 ; then becaufe $3: 2:: a: \frac{1}{3} a=$ C F, we get $a+\frac{2}{3} a=\frac{5}{3}=b$; whofe fquare being multiplied by 115^{2} gives 3200 ; from which fubtracting 375.63 , and extracting the'fquare root of the difference, we get 53.144 , from which fubtracting 18.9 and dividing by 72 , gives $x=.476 a$ nearly, in the firft cafe.

But if we fubtract 396.75 from 3200 , and extract the fquare root of the difference, we fhall have 52.945 ; from which 16.5 being fubtracted, and the difference divided by 72 , gives $x=.506$ a nearly, in the fecond cafe.

If the height of the wall is to that of the earth above it, as 4 to 3 ; then will $b=\frac{7}{4} a$; this value being fubftituted into $115^{2} b b$, gives 3528 , from which taking 375.64, and extracting the fquare root of the remainder, we get 56.145 ; if we take 18.9 from this and divide the remainder by 72 , we fhall have $x=.517$ nearly, in the firft cafe.

But if we fubtract 396.75 from 3528 and extract the fquare root of the difference, we get 55.975 ; from this fubtracting 16.5 and dividing by 72 , we thall have $x=.548$ a nearly, in the fecond cafe.

If the walls are built of brick, then by what has been faid at the end of the fecond problem, we have no more to do than to increafe the firft term under the radical fign, in the ratio of 4 to 5 ; then the general equation above, becomes that for brick walls. Whence, if the bafe AE of the Ilope is one fifth of the height BE, and the angle CDH, 45 degrees; then will $n=.2, s s=.5$; and $72 x+18.9 a=\sqrt{1440 b b-}$ 471.63 aa , will be the equation in this cafe: and if that bare be one fixth of the height BE , and the angle CDH, the fame as before, we have $n=\frac{1}{6}, s s=.5$: and therefore $72 x+16.5 a=\sqrt{1440 b b}-492.75 a a$ will be the equation.

Let the height of the wall be to that of the earth above it as 5 to 2 ; then will $b=\frac{7}{3} a$, whofe fquare multiplied by 1440 gives 2822.4 from which fubtracting 471.63 , and the fquare root being extracted, gives 48.484 , and taking 18.9 from this, the remainder divided by 72 gives $x=.411$ a, nearly in the firft cafe.

But if we fubtract 492.75 from 2822.4 and extract the fquare roor of the difference, we get 48.266 and 16.5 being taken fromit; the difference divided by 72 gives $x=.441$, nearly in the fecond cafe.

Explanation of the following Tables.

The fifth and fixth, contain the ratio's between the heights of ftone walls and their thicknefs above, when there is a parapet of earth above them; the bafe of the nope being one fifth and one fixth of the height of the wall; and the flope of earth makes an angle of 45 degrees; the ratio's between the height of the wall to that of the earth above it, are marked in the firft horizontal line and column : the length of the counterforts being one fourth of the walls height, and their thicknefs is to the interval between them, as unity to 3, that is the fame as before: The feventh and eighth tables contain the fame ratio's when the walls are of brick.

Their ufes are as follows: when the height of the wall is given, as well as that of the earth above it, reduce the ratio to its loweft term; look in the firf column for the antecedent, which is always fuppofed to exprefs the height of the wall, and for the confequent in the firt horizontal line, then the number oppofite to the firft, and under the fecond, expreffes the ratio between the height of the wall to its thicknefs above. This number being multiplied by the height of the wall, and the three laft figures taken as decimals, gives the thicknefs required.

Example, Let the height of a ftone wall, whofe nope is one fifth, be 20 feet, and that of the earch above it 12 : then becaufe 20 is to 12 as 5 is 203 ; look in the firf column of the fifth table for 5 , ard in the horizontal line for 3 : then the number 442 oppofite to the firt, and under the fecond, being multipliod by 20 , the height of the wall, gives 8.84 or 8 feet 10 inches nearly for its thicknefs above.

If the height of a fone wall, whofe flope is one fifth, be 13 feet, and that of the earth above it 6 : then in the fame table, the number 371 oppofite to 13 and uader 6, multiplied by ${ }^{13}$, the height of the wall,
gives 4.823 or 4 feet 9 inches nearly for the thicknefs above.

But if the flope is one fixth, look into the fixth table oppofite to 13 and under 6, and you will find 403, which being multiplied by 13 , gives 5.239 or 5 feet 3 inches nearly. We have not inferted the thicknefs of the walls near the foundation; becaufe they may be found by adding the bafe of the flope to the thicknefs above.
$N . B$. Thofe fquares which are marked with a point only, are oppofite to fuch ratio's as have been determined before, and therefore it would have been need. lefs to repeat them. Thus the ratio of 2 and 2 , of 3 and 3 , of 6 and $6,8 \mathrm{c}$. is the fame as that of unity to unity; and it is the fame in refpect to all other equal ratio's.

PR O B I, E M Vi.

To find the thickne/s above BC of a wall when the coinnterforts bave a fiope as F G. Fig. 5.
Draw F L perpendicular to the bafe A G; then if, for conveniency fake, we fuppofe C F to be one eighth, and the bafe D G three eighths of the height D C; the area of the rectangle DC , will be $\frac{1}{8} a a$, that of the triangle L GF, will alfo be one eighth of $a a$; and becaufe the diftances of the lines drawn through the centers of gravity, of the rectangle D F , and of the tri: angle $F L D$, perpendicular to the bate $D G$, from the point fix A, are AD $+\frac{1}{2} D L$, $A L+\frac{1}{3} L G$; that is, $x+n a+\frac{1}{6} a ; x+n a+\frac{5}{24} a$; and therefore their Lum, multiplied by $\frac{1}{8} a a$, and the product reduced in the ratio of 4 to unity, as has been hhewn in the third problem, gives $\frac{1}{16}$ a $a x+\frac{1}{1} n a^{3}+\frac{3 \cdot 25}{3} \cdot \frac{2}{8} a^{3}$, for the momentum of the counterforts, which being added to that of the wall found in the fecond problem, and the fum made equal to that of the earth; after having multiplied by $\frac{1}{2} a$, and the fecond fide reduced under the fame denomination, and the root of the firft multiplied by the root of the common denominator 81×64, we get

Table V.Containinge the Proportions between the Height of Stone Walls and that of the Earth above them the'B ave of the Slopebcing $\frac{1}{5}$ of y height

0	1	2	3	4	5	6	7	8	9	10
1	641	125	1604	2079	2553	3026	3499	3971	4443	4915
2	391	\cdot	8,95	\cdot	1365	\cdot	1842	\cdot	2316	\cdot
3	305	476	\cdot	804	965	\cdot	1285	1445	\cdot	762
4	261	\cdot	517	\cdot	763	\cdot	1005	\cdot	1246	\cdot
5	235	340	442	542	\cdot	739	836	933	1029	\cdot
6	217	\cdot	\cdot	\cdot	559	\cdot	723	\cdot	\cdot	\cdot
7	205	280	354	427	498	570	\cdot	711	781	850
8	194	\cdot	327	\cdot	454	\cdot	579	\cdot	702	\cdot
9	186	247	\cdot	363	420	\cdot	532	587	\cdot	695
10	180	\cdot	287	\cdot	\cdot	\cdot	491	\cdot	591	\cdot
11	173	225	273	321	368	414	460	506	551	596
12	171	\cdot	\cdot	\cdot	349	\cdot	433	\cdot	\cdot	.
13	168	211	251	292	332	371	411	449	488	527
14	165	\cdot	242	\cdot	318	\cdot	391	\cdot	463	\cdot
15	162	199	\cdot	270	\cdot	\cdot	374	408	\cdot	.
16	160	\cdot	228	\cdot	294	\cdot	359	\cdot	423	\cdot
17	158	190	222	254	285	316	346	376	406	436
18	156	\cdot	\cdot	\cdot	276	\cdot	334	\cdot	\cdot	.
19	154	183	212	240	268	296	323	351	377	405
20	152		208	\cdot	\cdot	\cdot	314	\cdot	366	\cdot

TableVI.Containing the Proportions betrueen the Height of Stone Walls, and that of the Earth above, them? the Buse of the Slope being \bar{b} of the height.

0	1	2	3	4	5	6	7	8	9	10
1	67^{2}	1157	1636	2/12	2586	3060	3532	4004	447	
2	422		97		1397		1874		2349	
3	335	506		835	997		1317	1477		7796
4	291		548		796		1037		1277	
5	264	370	47^{2}	574		77°	868	965	1061	
6	246				589		756			
7	233	310	3^{88}	45^{8}	530	604		742	812	88
8	223		357		485		610		734	
9	216	276		393	450		562	617		26
10	209		317				523		625	
11	204	254	302	350	400	444	497	536	582	627
12	200				379		46_{4}			
13	196	239	281	322	36_{2}	403	441	480	519	557
14	193		272		347		421		49+	
15	191	228		300			404	439		
16	158		257		324		388		453	
-17	186	219	233	28.4	316	346	377	408	$73{ }^{\circ}$	846
18	$18+$				307		364			
19	18:3	2/3	271	270	299	327	354	3^{82}	409	9435
20	181		237				374		400	

TableVII.Containing the Proportions beturan tle Height of Brick Walls and that of the Earth above thern? the Base of the Elope being $\frac{1}{5}$ of the heirhe

0	1	2	3	4	5	6	7	8	9	10
1	748	1289	1824	2355	2895	3414	3943	4479	4999	527
2	468	\cdot	1020	\cdot	1557	\cdot	2089	\cdot	2620	\cdot
3	372	562	\cdot	929	1110	\cdot	1468	1646	\cdot	2007
4	323	\cdot	609	\cdot	884	\cdot	1155	\cdot	1424	\cdot
5	293	411	523	637	\cdot	857	966	1074	1182	\cdot
6	273	\cdot	\cdot	\cdot	655	\cdot	838	\cdot	\cdot	\cdot
7	259	344	427	509	589	668	\cdot	926	904	974
8	248	\cdot	396	\cdot	539	\cdot	678	\cdot	816	\cdot
9	239	306	\cdot	436	500	\cdot	624	686	\cdot	808
10	232	\cdot	352	\cdot	\cdot	\cdot	581	\cdot	692	\cdot
11	227	282	336	390	442	494	545	596	647	697
12	222	\cdot	\cdot	\cdot	420	\cdot	516	\cdot	\cdot	\cdot
13	218	266	312	357	402	446	490	533	576	619
14	215	\cdot	302	\cdot	386	\cdot	468	\cdot	549	\cdot
15	212	253	\cdot	333	\cdot	\cdot	449	487	\cdot	\cdot
16	209	\cdot	286	\cdot	360	\cdot	432	\cdot	504	\cdot
17	207	243	279	314	349	383	418	452	485	518
18	205	\cdot	\cdot	\cdot	340	\cdot	404	\cdot	\cdot	\cdot
19	203	236	268	300	331	362	392	423	453	843
20	201	\cdot	263	\cdot	\cdot	\cdot	382	\cdot	440	\cdot

Table VIII.Containing the Proportions betreen the Height of Brick Walls. and that of the Earth above them? the Base of the Slopebeing 's of thelwight

o	,	2	3	4	5	6	7	8	9	10
,	779	1322	1856	2388	$29 / 8$	3447	3976	4504	+	
2	499		10.5		158		2/2		265	
3	402	593		961	142		1500	1678		
4	354		640		916		${ }^{1187}$		1456	
5	323	44	556	668		888	997	1108	1214	
6	320				687		870			
7	28	374	459	639	620	70		858	93	
8	277		42		570		710		848	
9	269	336		467	530		656	717		
10	262		383				612		724	
11	256	$3 / 2$	367	42	473	525	576	627	67^{8}	
12	251				461		546			
13	247	29	341	387	432	477	521	564	608	
14	244		332		416				580	
15	24	282		$3{ }^{6}$			480	518		
16	238		315		390		$4^{6} 3$		535	
17	${ }^{236}$	273	309	344	379	414	448	482	516	548
18	234				369		735			
19	232	265	298	329	361	392	423	453	484	
20	230		293				412		470	

$72 x+72 n a+4.5 a=a \sqrt{1536 s s-67.5+1728 n n,}$ for the equation required, which differs from that found in the third problem, by the term 67.5 , which there is 60.75 .

Hence, if $n=.2$, and $s s=.5$; thefe values multiplied by their coefficients, gives 769.62 , for the fum of the terms under the radical fign, whofe fquare root is 27.742, from which fubtracting the fum 18.9 of the two known terms, and the difference divided by 723 gives $x=.1228 a$, which is lefs than that found in the third problem; but not fo much as is worth taking notice of: fince in a wall of 30 feet high, the difference is only .7 of an inch :- confequently either of thefe counterforts may be ufed according to the builder's fancy.

Sometimes counterforts may be made with fteps, which may be done by making them fo as that the bafe and the area be the fame, without changing its momentum.

Fig. 6. Sometimes the fection of walls are made parallelograms without any counterforts, efpecially when they are low : fuch as A B CD : To find their thicknefs AD or BC ; draw the diagonal AC, and through the middle L , and the point C , the lines $\mathrm{L} \mathrm{K}, \mathrm{C}$ E perpendicular to the bafe AD produced; and let $\mathrm{AD}=x$, $\mathrm{DE}=n a$, and $\mathrm{CE}=a$; then will $a x$ exprefs the area of the parallelogram DB; and fince the point L is the center of gravity of the parallelogram; A K will be the diftance of the line of direction from the point A ; but becaufe AL is half of AC, the diftance A K, will be $\frac{1}{2} x+\frac{1}{2} n a$, half the diftance AE. Therefore the area $a x$ multiplied by the diftance AK, gives $\frac{1}{2} a x x+\frac{2}{2}$ a $a n x$, for its momentum, and fo equal to $\frac{4}{2} \frac{4}{2} s a^{3}$ that of the earth by the firft problem: which being divided by $\frac{1}{2} a$, and $\frac{1}{4} n n a \cdot a$, added to both fides: the firt will be a perfect fquare whofe root is $18 x+9 n a=a \sqrt{96 s s+81 n} n$, after having reduced the fecond fide under the fame denomination;
and multiplied the root of the firft by the root of the denominator 324, of the fecond.

If the firft term $96 s s$ under the radical fign be increafed in the ratio of 4 to 5 , we fhall have $18 x+$ $9 n a=a \sqrt{120 s s+81 n n}$ in walls built with brick.

Hence if $n=.2$, and $s s=.5$; we fhall get $x=.31 a$ nearly in fone walls, and $x=.355 a$, in brick walls.
Hence it may be eafily known whether thefe kinds of walls require more mafonry, than thofe in the firt figure without counterforts: for we have found in the fecond problem, when n and ss expreffed the fame values as bere, that $x=.2018 a$, and therefore the area of that profil, will come out to be $3018 a a$; and the area of the parallelogram DB, is $.3^{1} a a$: therefore the difference $.008_{2} a a$, Shews that this laft figure requires more than the former ; tho' not much in low walls.

Before we conclude this fection, we fhall add one general problem more, in order to fhew that it would have been eafy to reduce almoft every thing into a few problems, were it not neceffary to menage the learners capatity; and to lead him gradually from the molt fimple and eafy truths, to others more complex.

PROBLEM VLI.

Let the profil of a fone wall be a parallelogram as DB, and tie counterforts a trapezium DCFH, zubofe autward fope F H being equal to CD that of the wall, to find the thickness of the wall when there is a parapet of earth above it. Fig. 7.
If, for conveniency fake, C F be one tenth of the theight CE; and the reft the fame as before; then will $\mathrm{DH}=2 n a+\frac{2}{\mathrm{z}} a$; which being added to CF, $x^{\frac{2}{0}} a$, and the fum multiplied by half the height CE, gives $n a a+\frac{1}{\text { to }} a \operatorname{a}$ for the area of the trapezium, which being multiplied by $A D+\frac{1}{2} \mathrm{DH}$, that is $x+$
$n a+\frac{1}{2} a$, and the product reduced in the ratio of 4 to unity, gives $\frac{2}{60} a a x+\frac{1}{4} n n a^{3}+\frac{3}{30} n a^{3}+\frac{1}{800} a^{3}$ for its momentum ; which being added to $\frac{1}{2} a a x+$ $\frac{1}{2} n a a x$ that of the wall found above, and the fum made equal to $\frac{2}{2} \pi s \times 3 a b b-a^{3}$ that of earth, found in the fifth problem; the whole being divided by $\frac{1}{2} a$, and $\frac{1}{16} n n a-\frac{3}{80} n a a-\frac{1.5}{805} a a$, added to both fides, the firf will be a perfect fquare, and the fecond, being reduced under the fame denomination, gives $36 x+27 n a+.9 a=\sqrt{192 s s \times 3 b b-a a}+$ 81nnaa-48.0nna-2.43aa, after having multiplied the firft fide by 36 the root of the common denominator 1296 of the fecond.

When the wall is made of brick, there need no more than to increafe the coefficient 192, of the firt term under the radical Gign , in the ratio of 4 to 5 , which gives 240 for that coefficient in this cafes the other terms will remain the fame as before.

When there is no parapet of earth above the wall, then will $b=a$; and the firt term under the radical fign becomes 384 ssaa. and the reft will remain as before.

When $n=.2$, and $s s=.5$; then will $36 x+6.3 a=$ $\sqrt{288 b b-104.91 a a}$, in fone walls : but if $n=\frac{1}{6}$, and $s s=5$; then will $36 x+5.4 a=\sqrt{2886 b-}$ 98.97 aa .

And if $b=a$; that is, if there is no parapet of earth above the wall, we fhall have $x=.202 a$, in the firft cafe, and $x=.232 a$, in the fecond. But if the height of the wall is to that of the earth above it, as 4 to 3 , then will $b=\frac{7}{4} a$; the fquare of which being fubttituted into the two equations, gives $882 a a$, for the firft term under the radical fign, and the fquare root being extracted, we fhall find that $x=.6 a$ nearly in the firt cafe, and $x=.627 a$, in the fecond.

Hence it is very eafy to compare the quantity of mafonry, contained in walls, whofe profil is a paralle-
logram as in this figure, and the counterforts a trapezium; and thofe whofe profil is a trapezium, and the counterforts rectangles, as in the fecond profil : for the area of the profil in the fecond figure, with that of the counterfort reduced, is found to be $287 \mathrm{a} a$, when $n=\frac{1}{5}$, and $299 a$ a, when $n=\frac{1}{6}$.

And the aera of the profil and counterfort, according to the feventh figure, is found to be $277 a a$ when $n=\frac{1}{5}$; and $298 a$ a, when $n=\frac{1}{6}$.
Therefure the profil in the form of a parallelogram, requires lefs malonry than that whofe figure is a trapezium; and the difference is greater when $n=\frac{1}{5}$, than when $n=\frac{1}{6}$; but when n is one feventh or eighth, the trapezium figure has the advantage, as will be found by computation.

Thus we have fhewn how to find the thicknefs of walls, fuch as hhall refift the preffure of the earth, of all the different profils, that may be uied; and it will eafily appear, that our method is both more general, and much eafier than that given by other authors; the many general rules given here before, and their eafy application to practice, are convincing proofs of it; befides no author has attempted before to give tables for ramparts with demi-revetements; though they are much more ufeful than any other, on account, that the moft experienced engineers, fcarcely build any others now-a-day, and that for very good reafons; becaufe it faves great expences, befides they are not fo eafily deftroyed by battering pieces, and, when a breach is made, are foon repaired.

It may perhaps be faid, that we have reduced the counterforts to certain figures which are eafily computed, and therefore our folutions are not fo general as is pretended: But if the reader be pleafed to confider that the length given here agrees very nearly with that given by Mr. Vauban, and the rectaugular form has been fhewn to be more advantageous, than that of is trapezium, befides it is generally ufed here: As to thofe

Sect. i. FORTIFICATION.
thofe whofe profil is a trapezium, fuch as in the fifth and fixth figures; regard has been had to fuch dimenfions as are moft ufeful in practice, and fuch as are of a due proportion in refpect to the walls which they are to ftrengthen.

S E C T. II.

The Theory of ARCHES.

IN fortreffes it is abfololutely neceffary to build vaults and arches, fuch as over gate-ways, under-ground paffages, from the body of the place to the ditch, powder-magazines, cazemats, and lodgings for the fick and wounded, and for thofe which are not on duty, to reft in with fafety.

It is of no little importance, in the building of a fortrefs, to know exactly, and with certainty, what thicknefs piers that fupport arches of various magnitudes, require in different circumftances, fo as to make the work durable, and to ufe no more materials than it requires. The making powder-magazines, fo as to refift the fhells thrown upon them in a fiege, requires the utmoft fkill of an engineer, and has not hitherto been rightly determined by any body I know of. The engineers generally follow the dimenfions of thofe conftructed by Mr. Vauban, which indeed have fo well fucceeded, that it feems to be unneceffary to attempt any other rules to go by; were it not required, in many cafes, to make arches of different width, figure, higher and lower; and therefore, it will be proper to lay down general rules, which fhall anfwer all thefe various circumftances.

It is one of the moft difficult problems in mechanics, to find the momentum or force with which different kinds of arches act againft the piers that fupport them; and though many great mathematicians have endearyoureq
voured to folve $i t$, efpecially the gentlemen of the royal Academy of Sciences at Paris, and Mr. Belidor in his book called La frience des Ingenierers; yet, if I am not miftaken, neither of them has fucceeded; for whoever reads their performances will be more convinced of the difficulties that attend it, than of the truth of their folutions; and it is eafily perceived that fome of them are miftaken, and have perplexed themfelves with tedious algebraic expreffions, which when applied to eafy practical cafes are impoffible, which hews that their computations are built upon erroneous principles.

It is true, Mr. Belidor has better fucceeded in his principles than many others; yet his applications are not free from objections, as will appear hereafter, and which is the reafon that the thicknefs of the piers he affigns are fo much lefs than they fhould be.

It feems to be a difficult matter to determine this problem exactly, on account of the fuppofitions which are neceffarily to be made in regard to the cement that is ufed in the joints, in order to keep the arch-ftones together.

Thofe who go upon the refined fuppofition that the joints are quite fmooth and polifhed, without any mortar, are greatly miftaken; for befides that no fuch thing fubfifts in practice, their folutions, when applied to practical examples, give nothing but impoffibilities, as any one may be convinced who reads them with attention.

In the enufuing work, we fhall fuppofe, with Mr. Beldor, that the arch-ftones are laid in mortar, and fo cemented together as to prevent their fiding upon one another ; but not fo hard as to compofe as it were one folid ftone, becaufe this would be a plain contradiction, fince it could not act upon the piers in an oblique manner; but the mortar being of fuch a confiftence only, that if the piers were not fufficiently ftrong, the arch would break in the weakeft part, and thereby pverturn the piers. This fuppofition is the moft natural
that can be made, and has been found true in practice; for feveral arches have fallen down, for want of fufficient ftrength in the piers to refift their preffure; befides mortar requires fome time to harden, which being once effected, no accidents happen afterwards.

PROBLEMI.

To find the preffure of an arch againft the piers that fupport it. Plate II. Figure I.

Let AEFG be the fection of half the arch, A BCD that of the pier which fupports it; the point C taken near the foundation, may be confidered as fixed, and about which the pier muft turn to be overfet; $\mathrm{M} N$, one of the arch-ftones; O the center where all the joints meet when produced; and laftly, let AS be the line which terminates the fpring of the arch.

From the center of gravity \mathbf{X} of the ftone $\mathbf{M N}$, draw the vertical XT , and the perpendicular $\mathrm{X} Q$ to the joint OM ; and from any point a in $\mathbf{X ~ T , ~ d r a w ~}$ $a b$ perpendicular to X Q and $b d$ to X T : then the weight of the ftone MN is to its effect in the direction $b \mathbf{X}$ as $a \mathbf{X}$ is to $b \mathbf{X}$, and to that in the direction $a b$, as $a \mathrm{X}$ is to $a b$: as this laft effect is deftroyed by the friction of the ftones together with the mortar, the firft $b \mathrm{X}$ is only to be confidered. But the force $b \mathrm{X}$ is equivalent to the forces $b d, d \mathrm{X}$, the firft perpendicular, and the fecond parallel to the direction C V in which the pier refifts, by art 445 of our elem. and as this laft is defroyed by the contrary action of the other half arch, the firft $b d$ is only to be confidered.

If from the point fixed C, the line $C Q$ be drawn perpendicular to the direction $X Q$, and $\mathbf{X Q}$ interfeets CV in R; then as the angles CRQ, $b \times d$, are equal, the right angled triangles $\mathrm{CRQ}, b \mathrm{Xd}$,

Since then the momentum (art. 422) $\mathrm{CQ} \times b \mathrm{X}$ of the force $b \mathrm{X}$ is equal to the preduct of the force $b d$, multiplied by the diftance C R , and what has been proved of one arch-ftone, is equally true of any other ; by the property of the center of gravity (cart. 422) the momentum of half the arch againtt the pier, is equal to the product of its weight applied to its center of gravity, multiplied by the refpective diftance CR, from the point C to its direction X R.

If therefore, the point L be the center of gravity of AEFG half the arch, and LI, drawn perpendicular to OM , interfects OD in H and meets C V. in I: the product of the fum of all the weights in the direction $b d$ multiplied by the diftance $\mathrm{C} I$, will exprefs the total momentum of the preffure of the arch againft the pier.

C O R. I.

Hence if LK be perpendicular to AO, and s denotes the fine of the angle LOK, r its cofine, the radius being unity; and if n expreffes the weight of half the arch; the right angled fimilar triangles LKO, Xbd, give $1: r:: a \mathrm{X}: b \mathrm{X}=r n$, and $\mathrm{I}: s:: b \mathrm{X}: b d=r s n$: this value of $b d$, being wrote into C R $\times b d$, and C I for CR, gives $r \sin \times$ C I for the momentum of the preffure againtt the pier; and if W expreffes the weight of the pier, we have $r \sin \times \mathrm{CI}=\frac{1}{2} \mathrm{BC} \times \mathrm{W}$, ịn a flate of reft ; by art. 427.

C O R. II.

When the arch is femi-circular, then $r=s=\sqrt{\frac{1}{2}}$, and when it is eiliptical or an arc of a circle, the height OE is feldom lefs than the two thirds of half the width A S; and in this cafe s is to r as 2 to 3 , and the radius $\sqrt{4+9}=\sqrt{13}$; whence $r s=\frac{6}{T_{5}}=$
$\frac{1}{2}-\frac{1}{2}$; which differs fo little from that in a femicircle; by fuppofing $r s=\frac{1}{2}$, the difference will farcely be fenfible inpractice: and if n expreffes half the area AEF G; the equation in the laft corollary, becomes $2 n \times C I=B C \times W$.

C O R. III.

If the friction of the ftones be confidered, let q exprefs the weight which would juft move a fone lying upon another placed horizontally: then becaufe that weight or force is to its effect in any other direction $\mathbf{O M}$, as the radius is to the fine s of the angle L OK (art. 499,) that is, sq will exprefs that effect; and the radius is to the cofine r as the effect in the direction OM is to $r s q$ the effect in the horizontal direction $b d$, which being fubtracted from the force $r s n$ in that direction found above, gives $r s \times \overline{n-q}$ $\mathrm{xCI}=\frac{1}{2} \mathrm{BC} \times \mathrm{W}$: or becaufe it has been found by experiment, that a force equal to one third of the weight, will move a body in a horizontal direction upon a fmooth plane: the force q will therefore at leaft be equal to one third of the weight n : hence $\frac{2}{3} r \sin \times \mathrm{CI}=\frac{1}{2} \mathrm{BC} \times \mathrm{W}$, or when $r=\frac{1}{2}$, and n expreffes one third of the area AEFG, we get $2 n \times$ $\mathrm{CI}=\mathrm{BC} \times \mathrm{W}$, as before.

REMARK I.

As the furfaces of the arch-ftones are generally very rough, and befides the mortar renders them lefs liable to fide upon one another, than they would do without it; the momentum we have here given, is more than what arifes barely from the weights of the arch ftones; and even more, than when the weight n is diminifhed by one third, on account of the friction as in the laft corollary; but as arches under ground fupport a weight of earth, befides its own, and thofe above ground, ought
ought to refift the force of fhells, we fhall not diminih that momentum hereafter in our computation; leaving to the engineers to make it lefs whenever they fhall think it necefflary; which they may do, by fuppofing n to exprefs any part of the area AEFG; in the following equations.

REMARK II.

As the angle $\triangle O L$ increafes, fo the perpendicular QC or the momentum of the arch increafes, till that angle becomes a right one ; then $C Q$ becomes equal to the line $C V$, terminated by the horizontal line, paffing through the middle of the upper joint EF; and therefore $C V$ is the greateft diftance $C Q$ of all the $C Q$'s; and when $X Q$ pafles through the point fix C; then $C Q$ becomes nothing; and when the direction $X Q$ paffes between the points B, C, it becomes negative, and the greateft when equal to DG $\pm \frac{1}{2} A G$, and the part of the arch from the point where $C Q=0$ to the fpring $A D$, inftead of acting againft the pier, add ftrength to it, but as the above property of the center of grävity is general, whether a part is negative or not; we have no occation to confider the negative part feparately.

> P R O BLE M II.

To find the thicknefs of the piers BC, when the arch is terminated by two concentric circles defcribed from center O placed in the line A S, wbich pafles througb the Jpring of the arch.
Let che radius O A of the interior circle be a, that O G of the exterior b, the height of the pier AB=c, its thicknefs fought $\mathrm{BC}=z$, and the perpendicular $\mathrm{L} K$ $=m$; then as the right angled triangles OH L, H DI, are ifofceles, we have $\mathrm{O} \mathrm{H}=2 m, \mathrm{DH}$ or DI $=a+$ $z-2 m$, and CI $=c-a-z+2 m$, or if $g=c+2 m$
$-a, \mathrm{Cl}=g-z$; and as $\mathrm{W}=c z$; thefe values wrote into $2 n \times \mathrm{CI}=\mathrm{BC} \times \mathrm{W}$. found in Cor. 2 , give $2 n g-2 n z=c z z$ or $c z z+2 n z=2 n g$, whofe f̂quare root is $c z+n=\sqrt{2 c n g+n n .}$.
By means of this equation the thicknefs of the pier may be found; but before it can be applied, the values of n and m muft be determined. Let therefore unity be to r as the diameter to its circumference; then $\frac{1}{4} r a^{2}, \frac{1}{4} r b^{2}$, will exprefs the areas of the quadrants by art. 175; and $4 n=r b b$ - raa. The femifpheres defcribed by thefe quadrants about the axis O A, are (art. 216) $\frac{2}{3} r a^{3}, \frac{2}{3} r b^{3}$ and their difference will be the folid defcribed by the area of the arch about the rame axis, which folid is alfo equal to the product of the generating plane s and the circumference $2 r m$ defcribed by the center of gravity L (art. 425). Hence $2 r n m=\frac{2}{3} r b^{3}-\frac{{ }_{3}^{3}}{3} r a^{3}$, or $3^{n m}=b^{3}-a^{3}$, when reduced; and this equation divided by $4 n=r b b-r a a$, gives $\frac{3}{4} r m=a+\frac{b b}{a+b}$.

> EXAMPLE.

Let $a=12, b=c=15$; then becaufe $r=3.14159$, (art. 252) we get $n=\frac{1}{4} r \times b-a a=63.6171$ or
$\frac{3}{2} n=31.808 \frac{1}{2}, a+\frac{b b^{4}}{a+b}=20_{3}^{\frac{1}{3}}$, and hence $m=8.629$, $g=c+2 m-a=20.258$; which gives $2 c g+n=$ 639.548 , this multiplied by $31.808 \frac{3}{2}$, gives 20343 . 062558 for the fum of the terms under the radical fign, whofe fquare root is 142.629 ; from which fubtracting the known term 31.808 and dividing the difference by the coefficient (c) 15 gives $z=7.3^{88}$, or B C equal to 7 feet and 4 inches.

If we take 21.2056 , one third of the value n, on account of friation, then $2 \mathrm{cg}+\mathrm{n}=628.9456$, which mulciplied by 21.2056 , gives 13337.168815 for the fum of the terms under the radical lign, whote fquare root
foot is 115.866 ; from which fubtracting the known term 21. 2056, and dividing the difference by the coefficient 15 gives $z=6.285$, or $B C$ equal to 6 feet 3 inches.

PROBLEMIII.

To find the thicknefs B C of the piers, woben the outfide GF is a right line perpendicular to the radius O M wibich bifects ths quadrant O A E . Fig. 2.
It is evident that the triangles O LD, HDI, are the fame here as in the firtt figure, and therefore this problem differs from the former only in the values of n and m : whence if $\mathrm{O}=b$, and the reft as before; then becaufe the right angled triangle GOF is ifofceles, we have G F $=2 b$, and fo $b b$ expreffes the area of that triangle, and as $\frac{ \pm}{+} r a a$ expreffes the quadrant O A E, we have $n=b b-\frac{1}{4} r a a$.

Becaufe $\mathrm{OF}=b \sqrt{2}$, the cone defcribed by the triangle OF G, about the axis OF, will be expreffed by $\frac{2}{3} r b^{3} \sqrt{2}$, and the femi-fphere being $\frac{{ }_{3}^{3}}{3} r a^{3}$, by the laft problem; and fince unity is to $2 r$, as the radius K L or $\mathrm{OK}(m)$ is to the circumference 2 rm defcribed by the center of gravity L in the rotation, we have $3 n m=b^{3} \sqrt{2}-a^{3}$, by what has been faid before, after multiplying by 3 and dividing by $2 r$: con fequently $g=c+2 m-a$, and $c z+n=\sqrt{2 \operatorname{cg} n+n n}$ as before.

> E X A M P L E.

Let $a=12,5, b=15.5, c=15$; then will $n=$ $117.5387, m=9.3988, g=21.2976$, and if we take 58.7694 half the value of n, we get $2 \mathrm{cg}+n=$ 697.6974 , which multiplied by 58.7694 gives 41003.257579 , for the fum of the terms under the

Sect: 2. FORTIFICATION.
radical fign, whofe fquare root is 202.492 , from which taking the known term 58.969 and dividing the difference by the coefficient 15 gives $z=9.5^{8}$, or B C equal to . 9 feet 7 inches.

But if we take 39.1796 , orie third only, on account of the friction, we then get $2 \mathrm{cg}+n=678.1076$; this multiplied by 39.1796, gives 26567.98 .4525 for the fum of the terms under the radical fign, whofe Square root is 162.996 , from which taking the known term 39.17.9 and dividing the difference by the coefficient 15 gives $z=8.254$, or B.C equal to 8 feet 3 inches.

\because R'E MAR ${ }^{\prime}$

\therefore All arches require a certain thicknefs at the hanches M to fupport their own weight, and in powder magazines, to refift the fhock of Thells befides, but how-to :determine it' exactly is not eafily done $=$ It is true, that Mr. Vaxbam, makes it -3 feet in an arch of 25 feet wide, and as his powder magazines have been found ftrong enough by all accounts; there is no reafon to doubt; but that this thicknefs is fufficient for arches of that width: And if we confider that the force, which a timber fcantling fupports, is as the fquare of its height divided by the leaver of the force applied; as will be fhewn in the next fection prob. I: Then as the height of the fcantling; is reprefented here by the thicknefs. of the arch and the leaver by the radius of the arch : the radius 15.5 feet is to any other radius as the fquare 9 of the thicknefs 3 , is to the fquare of the thicknefs fought. Hence this rule; multiply tbe radius of any arch by 9, and divide the product by 12.5 ; then the faulare root of the quotient will be the thickne/s of that arich.

PROBLEM IV.

To find tbe thicknefs B C of the piers when tbe inffde is a right line parallel to the outfide.

The fame thing being fuppofed as in the laft, we thall have $n=b b-a a, 3 n m=\overline{b^{3}-a^{3}} \times \sqrt{2}$ or $\frac{3^{m}}{\sqrt{3}}=a+\frac{b b}{a+b}, g=c+2 m-a$ and $c: z+m=$ $\sqrt{2 \operatorname{cg} n+n n}$.

EXAMPE.

Leta $=12.5, b=15 . c=15$; then, $n=84 ;$, + $\frac{b b}{a+b}=21.08$, or $m=9.937, g=22.374$, and $2 c g+n=713.22$, which multiplied by 42 half the value of n, gives 29955.24 , for thefum of the ternts under the radical fign, whofe fquare root is 173.075 , from which fubtracting the known term 42, and dividing the difference by 15 gives $x=8.788$, or $\mathrm{BC}=8$ foet 8.8 inches. This is lefs by about a foot than in the laft example, the reaton is that $n=1 y^{\prime}$ is there, whereas it is but 84; therefore the pier has hese. lefs weight to fupport, than there.

> PROBLEMV.

Io find the thicknefs B C of the piers when the arob is terminated by two circular arcs, deforibed from the fame center \mathbf{O}, below the line A S wobich paffes through the Jpring of the arch. Fig. 3.

Let the chord A E be drawn; the radius A O produced fo as to meet the are GFin R, and the line
$O D$ parallet to $P A$, moeting $C I$ in D_{1} and interfecting the direction LI in H ; then if $\mathrm{O}, \mathrm{A}=\mathrm{a}_{3}$ $\bigcirc \mathrm{M}=b, \mathrm{~A} \mathrm{P}=p, \mathrm{PE}=d, \mathrm{AE}=b$, and the $\operatorname{arc} A E=v$.

This being fuppofed, we thall have $\frac{1}{2} a v$ for the area of the fector OAE, and as the fectors O A E, O R F , are fimilar, they are as the fquares of the radii; thereforea $a: b b:: \frac{1}{2} d v: \frac{b b v}{2 a}=$ to the feetor ORE; and $2 a n=v \times \overline{b b-a b}$.

Now becaufe the folids defcribed by thefe fectors in the rotation of the figure about a line palfing through the center O perpendicular to the radius OM , are the two thirds of the cylinders of the fame bafes, and whofe altitudes are the chords of thefe arcs, by art. 217. of our Elem. Math, the bares being $f \leq \epsilon, f t \xi_{2}$ and the rititudes, $b, \frac{b b}{\beta}$ thefe folids are $\frac{3}{2} r a b, \frac{2 r}{3 a} b b^{3}$, and if $\mathrm{OL}=m$, then will $3 \mathrm{amn}=b \times \overline{b^{2}-e^{3}}$.

The right angled triangles $O L$ H, H D 1, are fimilat to the triangle APE , and therefore $\mathrm{PE}(d): \mathrm{AB}$ (b): : OL ((m) : OH = $=\frac{b m}{d}$ and foDH $=p+$ * $\sim \frac{b m}{d}$; we have likewife $\cap P(p): P E(d):: D H:$ D $1=d+\frac{d z}{p}-\frac{b m}{p}$; now becaufe $\mathrm{OP}=a-d$, by fubtraeting the fum of $D I$ and $O P=a-d$, from the height of the pier c; we fhall have $C I=c-a+$ $\frac{b m}{p}-\frac{d z}{p}$; or if $g=c-a+\frac{b m}{p}$, it will be $\mathrm{CI}=$ $g-\frac{d z}{p}$, and confequently, $c z z=2 n g-\frac{2 n d z}{p}$ by cor. after prob. I. and if $d x=p q$; the fquare root of this equation will be $c z+q=\sqrt{2 c n g+q q}$.

Hence, if the height PE of the arch be the two chirds of $A P$; that is if $d=\frac{2}{3} p$; the right angled D_{2} triangle
triangle APE, gives $b=\frac{2}{5} p \sqrt{13}$, and the right angled triangle APO, gives $12 \cdot a=13 p$, becaufe $\mathrm{PO}=a-d, q=\frac{d}{p} n$, we get $\mathrm{PO}=\frac{5}{53} a, q=\frac{2}{3} n_{2}$ and $g=c+\frac{1}{3} m \sqrt{\frac{p}{3}}-a$. But $A O$ (a) is to PO (T_{s} a) as the radius 100000 is to 38461 the coline of the angle A O P, and therefore this angle is 67 degrees and 23 : minutes nearly or $67 \frac{23}{65}$ degrees. . Now be; caufe ra expreffes half the circumference of the radius a, we have 180 degrees is to $67 \frac{23}{6} \frac{3}{6}$ degrees as $\frac{10}{}$ is to $v=\frac{4043}{10800} \mathrm{ra}$.

EXAMPLE.
Let AP $=p=12, c=15$, then will $a=13$; $b=16$; hence $b=14.422, v=15.2887, n=$ $51.1583, m=13.727, q=17.0527, g=18.4975$; and 2 cng $=14194.5095, q q=290.9753$: there: fore 14485.4848 is the fum of the terms under the radical fign, whofe fquare, root is 120.355 , frem which fubtracting the known term 17.053, and dividing the difference by: the coefficient 15 , gives $z=$ 6.886 or B C equal to 6 feet 10 inches, which is lefs than $z=7.388$ found in the fecond problem.

> PROBLEM.VI.

To find the thickness BC of the piers woben the outfide G-F is a rigbt line parallel to the chord A E, and the reft being the fame as before., Fig. 4.

It is evident that this problem differs from the former, in the values of m and n only. Whence becaufe of the right angled fimilar triangles APE, OMF,

Sect, 2. FORTIFICATION.
wehave $\mathrm{A} P(p): \mathrm{PE}(d):: \mathrm{OM}(b): \mathrm{M} \mathrm{F}=\frac{b . d}{p}$; and as $M R$ is equal to $M F$, we have $\frac{b b \dot{d}}{p}$ for the area of the triangle $O R F$, and fince $\frac{1}{2} a v$ expreffes the area of the fector OA E by the laft problem, we have $2 p n=2 d b b-a p v$.

- Now becaufe the folid defrribed by the triangle QR F about an axis paffing throughithe center O parallel to the chord A_{0} E, is the two thirds of the cylinder of the fame bafe and altitude; the bafe being $r b b$, and the altitude $\mathrm{RF}, \frac{2 . b d}{p}$, this folid will be $\frac{4 r}{3 p} d b^{3}$; and as the folid defrribed by the fector OAE; $3 p$ in that rotation, is $\frac{2}{3} r a a b$; we get $3 m n p=2 d b^{3}$ a a $b p$; after having multiplied both fides by $3 p$ and dịided by 2%.

Therefore $g=c-a+\frac{b m}{p}$ and $c z+q=$ $\sqrt{2 c n g+q q}$ by the laft : fuppofing $d n=p q::$ If the center O be fuppofed to coincide with the point P; then a, p, and d, are equal, and the equations in the two laft problems, will then become the very fame à thofe in problems the fecond and third, with this referve, that OL is here called m, and LK in the firtt and fecond figure.

If $P E$ be again the two thirds of $A P$; we fhall find the fame values as in the laft ; that is, $d=\frac{2}{3} p, q=\frac{2}{3} n$, $12 a=13 p, b=\frac{1}{3} p \sqrt{\sqrt{3}}, g=c+\frac{1}{3} m \sqrt{13}-a$, and $v=\frac{4043}{10500} \mathrm{ra}$.

EXAMPLE.

Let $p_{2}=12, c=15$; then $a=13, \stackrel{\dot{b}}{\dot{b}}=16$, v $\Rightarrow{ }^{5} 5.288, n=71.289, m=14.139 ;$ and if we
take half the value of n. we get $q=23.763 ; 2 \mathrm{cng}=$ 20312.0183, $q q=564.6802$, and 20876.6985 , will be the fom of the terms under the radical fign; whofe fquare root is 144.487 , from which fubtracting the known term 23.763 , and dividing the difference by the coefficient 15 , gives $\$ \pm 8.04$, which is lefs than $z=8.254$, found in the third problem.
N. B. We have neglected the fmall fpace A G R 2 in the two laft figures, as being but inconfiderable, and would have readered the operations very tedious; befides in practice a geometrical exactnefs is impoffible and not neceflary; efpecially when the departing from it renders the operations more eafy and fimple, as is happens here in this cafe.

PROBLEM VII.

T'a find the thbicknefs B C of the piers, woben the arch is terminated by two circular arcs defcribed from. the center O, placed in the line AS, which pafes. tbrough the jpring of the arch. Fig. 5.

It is evident that the values of m and n are here the fame as in the fifth problem, fince wie have the fame fettors and triangles here as in the third figure; therefore $2 x a=v v \times \overline{b b-a a}$, and $\frac{3 v m}{2 b}=a+\frac{b b}{a+b}$:

Now betaufe of the fimilar triangles PEA, OLH, we have PE (d) : A E (b): : O L (m): OH= $\frac{b m}{d}$, and fo $a+z-\frac{b m}{d} \neq \mathrm{DH}$; and the fimilar trangles APE, DHI, give AP $(p):$ PE (d) : : D H : D I $=\frac{d a}{p}+\frac{d z}{p}-\frac{b m}{p} ;$ whence $\mathrm{CI}=c-\frac{d a}{p}-\frac{d z}{p}+$
$\frac{b m}{p}$, or if $g=c-\frac{d a}{p}+\frac{b m}{p}$; then will CI $=g-$ $\frac{d z}{p}$; confequently, $c z z=2 n g-\frac{2 d x z}{p}$; by corol. after the firt problem; and if $d n=p q$; the fquare root of this equation will be $c z+q=\sqrt{2 \mathrm{cng}+9 q}$.

If $O P$ is one fourth of the radius $O A$; that is, if the radius is the two thirds of the fpan of the arch, then will $\mathrm{AP}=p=\frac{3}{4} a$; and the right angled triangle OPE , gives $\mathrm{PE}=d=\frac{1}{4} a \sqrt{15}$, and the right angled triangle A P E, gives $\mathrm{AE}=b=\frac{1}{2} a \sqrt{6}$. But OE (a) is to $\mathrm{PO}\left(\frac{1}{4} a\right)$ as the radius 100000 is to the cofine 25000 of the A OE, which is found to be 75 degress and 32 minutes, or $75.5 \frac{1}{3}$ degrees.

And fince unity is to 3.14159 , as the radius a is tothe fomi-circumference 3.14159 a ; and 180 degrees. is to $75.5 \frac{1}{3}$ as the fermi-circumference $3.14159 a$, is to the arc $v=1.32$ a nearly.

EXAMPLE.

Let $A P=12, c=15$; then will $a=16, b=$ 19; hence $n=69.3$, m= $16.2645, g=20.8985$; and if we take half the value of n, we get $q=$ $44.733,2 \mathrm{cmg}=21723.9907,99=2001.0413$, and the fum of the terms under the radical fign will be, 23725.032 ; whofe fquare root is 154.028 ; from which fubtracting the known term 44.733, and dividing the difference by the coefficient 15 , gives $z=$ 7.2, which is lefs than $z=7.388$, found after prob. II.

PROB.LEM VIII.

To. fund the tbickne/s BC of the piers, weben the out-- Jide is a right lixe parallel to the chord A E, of the : infide arc: Fig. 6.

By the fimilarity of the triangles $O M \mathrm{M}, \mathrm{APE}$, we have $\mathrm{P} \mathrm{E}(d): \mathrm{AP}(p):: \mathrm{OM}(b): \mathrm{GM}=\frac{b p}{d}$ and finçe $G M$ and $M R$ are equal, we get $\frac{b . b A}{d}$ for the area of the triangle $O G R$, and as the area of the. fector OA E is $\frac{1}{2} a v$, we have $2 \cdot n d=2 b b p-a d v$: But the folid defribed by the triangle OGR, about an axis paffing through the center Q parallel to $A \mathrm{E}$, is $\frac{4 r p}{3 d} b^{3}$; and that of the fector O A E defrribed in that rotation $\frac{2}{5} r a a b$; therefore $3 d m n=2 p b t-$ a a $d b$, by what has been faid before. And becaufe there are the fame triangles here as in the latt figure; we have $g=c-\frac{d a}{p^{\prime}}+\frac{b m}{p}, d n=p q$, and $c z+q=$ $\overline{2<n g+q q}$ as pefore.

If we fuppofe again that O P is the three fourth of the radius $O A$; then will the values of p, d, b be the fame as before.

EXAMPLE.

Let as in the laft be $p=\frac{3}{4}, a=16, \quad b=19$, $c=15$; then will $d=\frac{1}{4} a \sqrt{15}, b=\frac{1}{2} a \sqrt{6}$, and $n=110.74, v=1.32 a, m=16.895, g=21.933$, and if we take half the value of n, we get $q=$ 71.796, $q 9=5154.665_{6}, 2 n c g=36432.9063$: therefore the fum of the terms under the radical fign is 4.1587 .5719 ; whofe fquare root is 20393 ; from which

Sect. 2. FORTIFICATION. 4 年 which fubtracting the known term 71.796 and dividing the difference by the coefficient 15 gives, $z=$ 8.8.

- N.B. We have neglected the fpace ERF, in the two laft figures, which could not be confidered withour rendering the operations very tedious and perplexed, and as in practice a fcrupulous nicety becomes more troublefome than -ufeful, we aim more at fimplicity than a too great mathematical Arrietnefs wherever practice is concerned.

LEMMAI.

The diameter $\mathbf{O} \mathrm{L}$, wobich bifects the chord A E, - joining the extremities of the two femi-axes A O , and O E , of an elliphos, bifects the area of the quadrant A L E O. Plate IIII. Fig. 7.

For the diameter OL bifects all its ordinates which are parallel to that chord, as well as all,the lines drawn in the triangle A OE parallel to the bafe A E; confequently, the diameter LO bifects the area A L E O of the quadrant.

COR.I.

Hence, becaufe the tangent L H , is parallel to the ordinate A E of the diameter OL , by the nature of the ellipfis, and this diameter bifects A E in m, and fince AOE is a right angle; $\mathrm{A} m, m \mathrm{O}, m \mathrm{E}$, are equal ; therefore the triangle $\mathrm{O} m \mathrm{~A}$, is ifofceles, and being fimilar to the triangle $O \mathrm{LH}$, this triangle is likewife ifofceles; confequently, $\mathrm{OK}=\mathrm{KH}$, and OL= L 耳 .

CQR.

COR II.

Hence the triangles A OE, OLK, are fimilar: for the triangles $\mathrm{OKL}_{2} \mathrm{HKL}$, having all their fidea equal, áre equal in all refpects : and fince the triangle HKL is fimilar to the triangle AOE, its equal OKL win be for too.

> COR. IIT.

Becaufe OK: OA: : OA: OH, or 2 OK, by the laft corollary ; whence $\mathrm{OA}=\mathrm{OK} \sqrt{2 ;}$ and by the fimilarity of the triangles AOE, OKL; we have OA: AE: :OK : OL, and fince OA=OK $\sqrt{2 \text {; }}$ we have $A E=O L \sqrt{2}$ by equality of ratia's.

PROBLEM LX.

I' find the thicknefs. B C of the piers, when G F A E, are truo fimilar elliptical quadrants, defcribed fram the fake center \mathbf{O}, and the joints are perpendicular to the tangent is that pointa Fig. 8.

If $O A=a, O G=b, O E=d$, and the reft as befores then will $O F=\frac{b d}{a}$, by fuppofition, whence fince the circular quadrant defcribed with the radius OG, b, will be $\frac{1}{4} r b b$, and is to the elliptical quadrant OGF, as OG(b) to OF ($\frac{b d}{a}$) and therefore this clliptic quadrant will be $\frac{b b d}{a}$; and the quadrant $\mathrm{OAE}_{\text {, }}$ will be $\frac{1}{4}$ rad by the fame reafon; therefore $4 a n=$ $r d \times \overline{b b}-a a$, after having multiplied by $4 a$.

Setiar FORTIFICATION.
Now becaufe $a a, r b b$, exprefs the areas of circtes defcribed by the radit $\mathbf{O A}, \mathbf{O} \mathbf{G}$, in the rotation of: the figure about the axis OF, and fince the folids def., cribed by the elliptical quadrants in this rotation are the two thirds of the cylinders of the fame bafe and sititudes, thefe folids will be $\frac{2}{3} \operatorname{ra} a d_{9} \frac{2 r}{3 a} d b^{3}$, and their difference equal to 2 rm by art. 42 g . fuppoling OK=m; which gives $3 \operatorname{amn}=d \times \sqrt{b^{3}-a^{3}}$, after having multiplied by 3 a. The firf fide of this equality being divided by $4 a n$, and the fecond by its equal, gives $\frac{3}{4} r=m=a+\frac{b b}{a+b}$.

- If we imagine a quadrant of an ellipfis to be defcribed through the center of gravity L , fimilar to the former; then the direction $\mathrm{L} H$, will be a tangent to the ellipfis, and therefore perpendicular to the joint pafing through that point ; and $\mathrm{OK}=\mathrm{KH}_{3}$ by cor. I , or $\mathrm{O} \mathrm{H}=2 m$; hence $\mathrm{DH}=a+z-2 n ;$ and by the fimilarity of the triangles $\mathrm{AOE}, \mathrm{HDI}$, we have $\mathrm{AO}(a): \mathrm{OE}(d):: \mathrm{DH}: \mathrm{DI}=d+\frac{d z}{a}$ $\frac{2 m d}{a}$, and foCI $=c-d+\frac{2 m d}{a}-\frac{d z}{a}$; orif $g=$ $f-d+\frac{2 d m}{a}$; we have $c z z=2 n g-\frac{2 n d z}{a}$, by cor. after prob. I. and if $a q=\pi d$, the fquare root of this equation is $c x+q=\sqrt{26 n g+q q}$.

EXAMPLE.

Let $a=12, b=c=15, d=9$; then as $r=$ 3.142 nealy, we get $n=47.72, m=8.629 ; g=$ 18.943, and taking the two thirds of the area 47.72 for the value of n, we fhall have $q=23.86$ and $\$ 8648.4988$ for the fum of the terms under the radical fign, whofe fquare root is 136.559 , from which fubtracting
fubtracting the known term ${ }_{23}, 8,6$, and dividing the difference by 15 , we hall have $E=7.513$, or B C. equal to 7 feet 6 inches.

PROBLEM: X.

To find the thicknefs B C of the piers, woben the: outfide, is a right line G F, parallel to the chord A E robich fubtends :tbe elliptical quadrant:

Fig. 9..

If $\mathrm{AO}=a, \mathrm{OE}=d, \mathrm{OM}=\delta, \mathrm{O} m$ or $\mathrm{A} m=b$, and the reft as before; then by the parallel lines A E, G F; we have $\mathrm{Om}(b): O \mathrm{E}(d):: \mathrm{OM}(b): \mathrm{OE}=$ $\frac{b d}{b} ;$ and $\mathrm{O} m(b): О \mathrm{~A}(a):: \mathrm{OM}(b): \mathrm{OG}=\frac{a b}{b} ;$ whence $\frac{a b b d}{2 b b}$ will exprefs the area of the triangle GOF, and fince $\frac{1}{4} r a d$ expreffes the area of the elliptical quadrant, we have $4 b b n=a d \times \overline{2} b \overline{-r} b b$ after having multiplied by $4: b b$.
Now becaufe $r a a_{y} \frac{r a a b b}{b b}$, exprefs the circles deff cribed by the radii, OA, OG, in the rotation of the figure about the axis OF; we have $\frac{2}{3} r a a d, \frac{r a a d b^{3}}{3 b^{3}}$ for the folids defcribed by the quadrant OAE, and the triangle GOF, in that rotation; therefore their difierence is equal to $2 r m n$ by what has been faid before which gives $6 m n b^{3}=a a d \times \overline{b^{3}-2 b^{3}}$.

As the reft of the figure is the fame as before, we have $g=c-d+\frac{2 m d}{a}, a q=n d$ and $a z+q=$ $\sqrt{2(n g+q 9}$ as above.

EXAM-

IEXAMPLE:

- Let $a=12, d=9,15 ;$ then will $b=7.5$ andathe diameter $\mathrm{O} n=\mathrm{A}_{\mathrm{E}} \mathrm{E} \sqrt{3 / 2}$ by cor. 3. will be 10:6, and if we allow fer for the thicknefs Mof the arch: we have $b=13.6$, whence $n=92,72$, $m=9,23, g=19.845$; and if we take 61.812 the two thirds of the area. 92.72 for the value of n, we get $q=46.36$, and 38949.0238 for the fum of the terms under the radical fign, whofe fquare root is 197,355 , from which fubtracting the known term 46.36 ,., and dividing the difference by 1.5 , gives $z=10.066$, nearly; which is 5 inches more than when the in fide is circular, this arifes from the difference be: tween the weights of the arches; for we found 412 feet in problem 3, and here only 92.72 , fo that cither of thefe arches may be ufed, as: occafion thall requige.

Buxif $c=9_{x}$ and the reft as before; then will $z=9.57$, which is yery little lefs than what has been found in the third problem.

When both fides of the arch are terminated by ellipfis, its piers require lefs mafonry, than when it is terminated by circles; for we found in the fecond problem 7 feet 4 inches, and in the ninth 7 feet 6 inches, and therefore the difference is 2 inches: notwithtanding Mr. Belidor found the contrary, and from thence concludes that the elliptic arch has a greater preffure than the circular one : this would be true if the weights of the arches were equal; but we have found the area in the circular one to be $6_{3} .62$ feet, and 47.72 feet in the ellipfis; and thenofore the weight of the circular arch is. to the weight of the elliptic arch, - F 33 is to 100 nearly. So that the weight of the firt is about one third miore than in the fecond.

P置OLEM XI.

To find the tbicknefs B C of the piers twhen there art counterforts V D; the inyfide of the arch being circular and the outfide a rigbt line. Fig. 10.

Let $\mathbf{C V}=\mathrm{b}$; be the length of the counterforts, which have the fame height as the piers, and the in teival from the one to the other, is to their thicknefs as two to one.

- It is plain that the point C is no more that about which the piers mult turn in ordes to be overfet, but It is the point ∇ or extremity of the counterforts: fo that the diftance V I of the direction $L I$, muif here be found on the line $\mathrm{V} R$.
\cdots If we retain the fame values as before, we get $n=b b-\frac{4}{4} r a a, 3 n m=b^{3} \cdot \sqrt{2}$ - a^{3} and $\mathrm{OH}=2^{2} m$, by the third problem : whence $\mathrm{RH}=a+b+z$ $2 m$, and $V 1=c-a-b+z m-z$, orif $g=$ $c-a-b+2 m$; then will $\mathrm{VI}=g-z$; there fore $2 n g-2 n z$ will be double the momentum of the arch.

And fince $c z$ expreffes the area of the pier $C A$, and $b+\frac{1}{2} z$, the diftance of its center of gravity from the line $R V$, we have $c \hbar z+\frac{1}{2} c z z$ for ifs momentum; and the area $c b$ of the counterforis multiplied by $\frac{1}{2} b$, gives $\frac{1}{2} c b b$ for its momentum, which being redurced in the ratio of 3 to unity, gives $\frac{*}{6} c b b$; therefore twice the fum of there laft momentums, muft be equal to that above, by cor. afrer prob. 1 , that is $c z z+2 c b z+\frac{3}{3} c b b=$ $2 n g-2 n z$; and if $q=n+c b$; the fquare root of this equation will be $c z+q=\sqrt{26 n g}$ $-\frac{1}{3} \operatorname{cob} b+q q$.

EXAMPLE.

Let $a=12, b=15, c=9, b=4$; then will $n=112$, $m=9.072, g=11.144$, and $q=148$; hence $4393^{8.304}$ will be the fum of the tetms under the radical figh, whofe fquare root is 209.614 ; from which fubtracting the known term 148, and dividing the difference by 9 , gives $z=6.846$ feet pearly, or B C equal to 6 feet io inches, which is 14 inches only lefs, than what Mr. Vauban has given to his piers, the counterforts being the fame.

If we fuppore $c=15$, and $b=5$; the reft being the ame as before, we fhall have $n=112, m=9.072$ as before, and $g=16.144, q=187$; whence the fum of the terms under the radical fign is 87337.84 , whofe fquare root is 295.529 , from which fubtracting the known term 187, and dividing the difference by 15, gives $z=7.235$ nearly, or B C equal to 7 feet 3 inches nearly, whereas Mr. Bclidor finds but 3 feetone inch for the fame thicknefs; which methinks might have given him reafon to fufpect his theory, as differing fo widely from Mr. Vauban's practice, although the latter did not deduce his rules from any theory, yet his great practice made him arrive generatly pretty near the truth.

If we fuppofe the height of the piers c to be 9 feet, and the length $k_{\text {, }} 3$ feet only, we fhall find $z=7.746$ or BC equal to 7 feet 9 inches, nearly, which differs from the thicknefs given by Mr. Vaubam, by 3 inches only; fo that, according to this theory, he made the length of his counterforts one foot more than is required.

Having confidered that moft practitioners are unacquainted with algebra, and being willing to render this book ufeful to every perfon employed in thefe works, we imagined that a table containing the dimenfions of the piers of different width of arches would be acceptable to many of my readers, for which reafon we have inferted the following one.

	10	12	14	16	18	20	22	24	26	30	32	34	36
9	3.686	4.239	4.750	5.22.4	5606	6.082	6.472	6.844	6.9697.545	7.855	8.105	8.465	8.754
10	3.768	4.347	4885	5.386	5.855	6.297	6.740	7.106	7.4837 .841	8.180	8.510	8.821	9.164
11	3.838	4.440	5.00	$5 \cdot 5.3$	6	6.486	0.935	7.343	7.7418 .120	8.184	8.834	9.171	9.494
12	3.899	$4 \cdot 529$	5.105	5,649	168	6.657	7-118	$7 \cdot 554$	7.974 8.375	8.757	9.125	9.479	9.822
13	3.950	4.592	5	$5 \cdot 763$	6.298	6.809	7.292	$7 \cdot 74$	8.185, 8.604	9.006	9.39 ${ }^{\prime}$	9.765	10.123
14	3.990	4.653	5.267	5.861	6.415	6.939	7.445	7.922	3.3718 .814	9.230	9.638	10.027	10.402
15	4.039	$4 \cdot 711$	$5 \cdot 348$	5.949	6.521	7.053	7.585	8.079	3.5539 .006	9.456	9.801	10.2:0	10,661
16	+.076	4.7615	5,411	6.031	6.616	7.180	$7 \cdot 715$	8.223	5.714 9.185	9.636	10.07	0.493	10.894
17	+.109	4.806	5.469	6.1066	6.702	7.27.8	7.832	8.349	8.809 9.348	9.816	10.26	10.712	11.125
18	+1. 3^{8}	4.8475	$5 \cdot 522$	6.167	0.783	$7 \cdot 375$	7.948	8.479	9.9989 .499	9982	10.443	10.868	11.333
19	$\frac{3}{4172}$	4.884	$5 \cdot 563$	6.227	6.859	7.457	8.038	8.59C	$\underline{3.1259 .637}$	10.136	10.612	11.080	11.528
20	+.257	$4 \cdot 9375$	5.614	6.282 6	6.92	7.537	8.129	8.694	7.24219.769	10.279	10.772	11.218	1.710

Sect. 2. FORTIFICATION.
The firt line $10,12,14, \& \%$. expreffes the width of the arches in feet; the reft of the lines, the thickneffes of the piers in feet and decimals, anfwering to their heights marked in feet in the firft column $9,10,11,12, \& c$. refpectively from 9 to 20 feet.

It may be oblerved that the length of the counterforts, have here been made one fixth part of the opening of the arch, or $3 b$ is always equal to the radius a : which proportion we found to be moft agreeable in re, gard to the thicknefs of the piers; for by making the counterforts longer, the piers of fmall arches would become fo thin, and the materials would thereby not join fo well, which ought to be avoided.

Thofe who are not verfed in Algebra, may depend on the dimenfions here given, and that the arches will be good and lafting, provided the work is well executed, and the materials good; it is however advifeable to leave the centers ftanding at leaft for fix months, in order to give time to the mafonry to fettle and harden; which being done, the work will not fail afterwards.

PROBLEM XII.

To find the tbickness of the piers, baving counterforts when the infide is an ellipfis. Fig. 10.

Becaufe we have $6 m n b^{3}=a a d \times \overline{b^{3}-2 b^{3}}$ and $4 b b n=a d \times \overline{2 b b}-r b b$ by problem X ; and R H $=a+l+z-2 m$, by the laft problem, fuppofing $\mathrm{CV}=l$, and by the fimilarity of the triangles OAE, RHI, we have AO (a): OE (d): : RH: $\mathrm{RI}=d+\frac{d l}{a}+\frac{d z}{a}-\frac{2 d m}{a}$. Hence VI $=c-$ $d-\frac{d l}{a}-\frac{d z}{a}+\frac{2 d m}{a}$; or if $g=c=d-\frac{d l}{a}+$
$\frac{2 d m}{a}$; we get VI $=g-\frac{d z}{a}$, and therefore $2 g n-$ $\xrightarrow[a]{2 n d z}$ will be double the momentum of the arch, which therefore is equal to double the momentum of the pier and counterfort, found in the laft problem; that is, $c z z+$ $2 c l z+\frac{1}{5} c l l=2 g n-\frac{2 n d z}{a}$; and if $q=c l+\frac{n d}{a}$ the fquare root of this equation will be $c z+q=$ $\sqrt{2 c n g-\frac{1}{3}} c c c l+q q$.

EXAMPLE.

Let $a=12, d=c=9, l=4$; then will $n=92.72$, $n=9.23$ by problem X. whence $g=10.845$, and $q=105.54$; thefe values being fubftituted into the equation above, gives 28806.5628 for the fum of the terms under the radical fign, whofe fquare root is 169.72, from which fubtracting the known term 105.54, and dividing the difference by 9 , gives $z=7.13$ feet.

This thicknefs of the piers exceeds that, when the arch is circular by 3 inches only; but as the quantity of mafonry in the circular arch is to the quantity in the elliptic arch, as 112 to 92.72 ; or as 7 to 5.8 nearly ; it is' evident that the elliptic arch and piers together requires lefs mafonry than the circular arch and its piers.

Since then the elliptic arch is rather ftronger at its hanches than the circular one, and the middle or its weakeft part, fufficiently covered by mafonry ; and as it is lower, and therefore better covered from the fight of an enemy, it cannot be fo eafily deftroyed; it is evident, that it may be ufed as well, and often with greater advantage, than the circular one.

PR O:

PROBLEM XIII.

To find the thicknefs of the piers of a circular arch when there is a wall AEF G above the piers as it bappens over the gates of a fortrefs. Fig. II.
The fame thing being fuppofed as in the fecond problem, and calling the thicknefs AE of the wall d, its height EF, b; then will $d b$ exprefs the area of the wall, which being multiplied by $z-\frac{x}{2} d$, gives $d b z-\frac{1}{2} d d b$ for its momentium, and as that of the pier is $\frac{1}{2} c z z$, that of the arch $n g-n z$, by the fecond problem, and therefore $c z z+2 d b z-d d b=$ $2 n g-2 n z$; and if $q=n+d b$; we fhall have $c z+$ $q=\sqrt{2 c n g+c d d b+q q}$.
N.B. It muft be obferved that $4 n=r b b-r a a$, $\frac{3}{4} r m=a \dot{+} \frac{b b}{a+b}$, and $g=c-a+2 m$ by the fe-: cond problem.

E. X A M PLE.

Let $a=5, b=7, c=10, d=2, b=20$; then will $n=18.85^{2}, m=3.854, g=12.708, q=58.852$; and performing the operations indicated by the equation we fhall find z, or the thicknefs BC of the piers to be 3 feet 3 inches nearly.

PROBLEM XIV.

To find the thicknefs of the piers when the arch is elliptical, tbe reft being the fame as before. Fig. 11 .
If the height within of the arch be called s; then. will $4 a n=r s \times \overline{b b-a}, \frac{3}{4} r m=a+\frac{b b}{a+b}, g=$
$c-s$
$c-s+\frac{2 m s}{a}$, by the ninth problem; and $2 n g-$ $2 n z$ will be double the momentum of the arch, which being made equal to double the fum of the momentums of the pier and the wall, found in the laft problem, gives $c z z+2 d b z-d d b=2 n g-2 n z$, or $c z+q=\sqrt{2 c n g+c d d+q q}$ by fuppoing $q=$ $\cdots+d b$.

EXAMPLE.

Let $a=5, b=7, c=10, d=' 2, b=20$, as before, and the height $s=4$; then will $n=15.08$, $m=3.854, g=12.166, q=55.08$; and performing the operations indicated by the equation, we get $z=3.154$, which being fomething lefs than the former, fhews that either of thefe figures may be ufed, according as it is judged convenient.
P R O B L E M. XV.

To find the tbicknefs of the piers of a circular arch, woben they bave a given llope CD on the outfide. Fig. 12.
From the point C draw C E, and DF parallel to A B, and let the direction LH meet CE in I; then if $\mathrm{BF}=z, \mathrm{FC}=b$, and the reft as before, the rectangle $c z$ multiplied by $\frac{1}{2} z+b$, gives $\frac{1}{2} c z z+$ $c b z$ for the momentum of the part FA of the pier, and $\frac{1}{3} b b c$ will be the momentum of the part CFD, therefore $c z z+2 c b z+\frac{2}{3} c b b=2 n g-2 n z$ by the fecond problem; and if $q=c b+n$, the fquare root of thisequation will be $c z+q=\sqrt{2 c n g-\frac{2}{3} c c b b+q q}$.

The values of m and n are the fame as in the fifteenth problem, and $g=c=a=b+2 m$.

EXAMPLE.

Let $a=5, b=7, c=10, b=2$; then will $n=$ 18.852, $m=3.854$ as before, and $g=10.708, q=$ 38.852 whence the fum of the terms under the radical fign is 5279.5719 , whofe fquare root is $\mathbf{7 2 . 6 6}$, from which fubtracting the known term 38.852, and dividing the difference by 10 , we get $z=3.38$ nearly , and B C equal to 5.38 feet.

PROBLEM XVI.

The fame tbing being fuppofed to find the thickness of the piers, woben the arch is elliptical.

The fame denomination being fuppofed as in the fourteenth problem; then the values of m and n are the fame here as there; and $g=c-s-\frac{s b}{a}+\frac{2 s m}{a}$; therefore, if $q=s{ }_{a}^{s}+c b$, the reft will be the fame as in the laft problem, that is $c z+q=\sqrt{2 c n g-}$ $\overline{\frac{2}{3} c c b b+q q}$.

EXAMPLE.

Let $a=5, b=7, c=10, s=4, b=2$; then will $n=15.08, m=3.854, g=10.566, q=32.064$; and performing the operations indicated by the equation, we fhall have $z=2.86$; and therefore $B C$ will be 4.86 feet.

PROBLEM XVII.

Suppoje a wall K OL M to be continued above the arch witb a lope on the outfide; to find the tbicknefs K P or L M, the baje P O of the llope being given. Fig. 13.

Let $\mathrm{PO}=d, \mathrm{PL}=b ; \mathrm{KP}=z$; and the reft as before; then $z b$ multiplied by $\frac{1}{2} z+d$, gives $\frac{1}{2} b z z+$ $d b z$ for the momentum of the part PM of the pier, and $\frac{1}{2} d b$ multiplied by $\frac{2}{3} d$, gives $\frac{2}{3} d d b$ for the momentum of the other part OPL; the reft being the fame as in the fifteenth problem, and therefore $b z z+2 d b z+\frac{2}{3} d d b=2 n g-2 n z$; and if $q=$ $n+d b$ the fquare root of this equation will be $b z+$ $q=\sqrt{2 n b g-\frac{2}{3} d d b b+q q}$.

EXAMPLE.

Let $a=6, b=8, c=10 ; b=16, d=3$; then will $n=22$ nearly, $m=4.486, g=c-a-d$ + $2 m=9.972, q=70$; and finifhing the reft of the operations indicated by the problem, we fhall have $z=2$ feet nearly; and therefore K O , is 4 feet.

Arches, as thefe are ufeful in building galleries behind the counterfcarps of ditches, fuch as are made at Bergen-op-zoom, but when they are made pretty large, they become too high; for which reafon I would choofe to make them elliptical; and as we have all along found that their preffure is rather lefs than that of the circular ones, on account of their having lefs weight; the fame computations we made in regard to circular arches, will equally hold good in the elliptical pnes.

PRO.

PROBLEM XVIII.

To find the tbicknefs B F or A D, woben there is a prefure of eartb againft the outfide lope C D. Fig. 12.

We have fhewn in the firft fection of this work, that the preffure of earth when compared to brick walls, was equivalent to $\frac{2}{2 \pi}$ parts of the cube of its height; and as thefe walls-are commonly made of bricks, we have no more to do, than to add $\frac{2}{2 \pi} c^{3}$, to the momentum of the pier found in the feventeenth problem, in order to have the equation $c z+q=\sqrt{2 c n g}$ $\frac{2}{2} c c b b+q q-\frac{2^{2}}{2^{2} c^{4}}$, for this cafe.

EXAMPLE.

Let $a=5, b=7, c=10, b=2$; then will $n=$ 18.85, $m=3.854, g=10.708$, as before in the fifteenth problem, and $q=38.85$; thefe values being fubftituted into the equation, and the operations performed as indicated by the equation, gives $z=2$ feet nearly, and therefore BC is 4 feet.

PROBLEM XIX.

To find the tbickne/s of the piers with counterforts, woben there are two circular arches below, and a finall one above, Plate IV. Fig. 14.

The fame denomination being fuppofed as in the eleventh problem, in regard to the lower arch, and let the fame lines be drawn in the upper one; then if $0 a=s, \mathrm{OQ}$ or $r o=f, \mathrm{Q} \circ$ or $\mathrm{O} r=x ; u$ half the area of the fmall arch, $o b=2 p$; then will $u=.777$ ss and $p=.756 s$, by the eleventh problem : whence $r b$

or, $\mathrm{RI}=a+b+z-x+f-2 p$; and $\mathrm{VI}=c$ -$a-b-z+x-f+2 p$; or if $y=c+x+2 p-$ $a-b-f$; then will $\mathrm{V} \mathrm{I}=y-z$, which being multiplied by $2 u$, gives $2 u y-2 u z$ for double the momentum of the upper arch; this added to $2 n g-2 n z$ double the momentum of the lower arch, and the fum made equal to double the momentum of the pier and counterfort found in the before-mentioned problem, gives $c z z+2 c b z+\frac{1}{3} c b b=2 n g+2 u y$ $2 n z-2 \dot{z} z$; whence if $q=c b+n+u$, the fquare root of this equation will be $c z+q=\sqrt{2 c n g 干}$ 2cuy-交ccbb+qq.

EXAMPLE.

Let $a=12, c=s=8$; then if $\mathrm{OQ}=f=14 \frac{1}{3}$; that is the lower arch, being three layers of brick thick; and the height $\mathrm{P}_{0}=5 \frac{2}{5}$; then will $\mathrm{Q}_{0}=$ $\dot{x}=20 ; u=49.728, p=6.048, y=9.7^{6} 3$, and $n=112, m=9.072, g=10.144$, by the eleventh problem; hence we get $q=197.728$, and 64700.98 for the fum of the terms under the radical fign, whofe fquare root is 254.363 ; from which fubftracting the known term 197.728, and dividing the difference by the coefficient, gives $z=7.08$ nearly:
$N . B$. We have fuppofed the trilinear fpace S between the lower and upper arch to be empty; that is without mafonry, befides a fmall fpace between the roof and the pier of the upper arch has been neglected; but as it hardly can make any fenfible difference in the thicknefs of the piers, the reader may depend on that found here to be fufficiently exact for practice.

PRO.

PROBLEMXX.

To find the thicknefs of the piers with counterforts, when there are two fmall arches below, and a great one above. Fig. I 5 .
Let $a 0=s$; the height $\mathrm{V} r$ of the lower piers, x; $u=.777 s s$; $p=.756 s$; then will $o b=2 p$, by the eleventh problem; and as or $=s+b+z$, we get $r b$ or $r i=s+b+z-2 p$, and $\vee i=x-s-b$ $-z+2 p$; or if $y=x+2 p-s-b$; then will $\mathrm{V} i=y-z$, therefore $2 u y-2 u z$, will be twice the momentum of the lower arch.

Now if we fuppofe the fame values as in the eleventh problem, for the upper arch; that is $n=777 . a a_{\text {, }}$ $m=.756 a, g=c+2 m-a-b$; then will $2 n g$ $2 n z$ be twice the momentum of the great arch; and therefore $c z z+2 c b z+\frac{1}{3} c b b=2 n g+2 u y$ $2 n z-2 u y$; whence if $q=c b+n+u$; the fquare root of this equation will be $c z+q=\sqrt{2 c n g+}$ $\frac{2}{2} c u y-\frac{1}{3} c c b b+q q$.

EXAMPLE.

Let $a=15, c=26, x=s=9, b=4$; then will $u=27.972, p=4.536, y=5.072, n=174.825$, $m=11.34$; and $g=29.38, q=306.797$; now the operations indicated by the equation being performed, we fhall have $z=11.54$ feet.

Either of thefe two laft problems may ferve to conftruct large powder magazines in the inland part of the country, where no enemy can come near them; for in fortified places, engineers choofe to make feveral fmall ones, fo that if any one be deftroyed by the enemy, the powder might not all be loft, which would prove the lofs of the place at the fame time.

If the arches were made elliptical inftead of circular, they need not be fo high, and a great deal of mafonry might be faved, as has been fhewn in the twelfth problem.

PROBLEM XXI.

Let eitber the exterior or interior curve of an arch be given to find the other fuch, that all the arch. ftones Jaall be in equilibrio with each otber. Fig. 16.

Suppofe the interior curve AbcdB to be given, and let all the joints froduced, meet in the fame point C; from the centers of gravity v, x, y, of the archftones, let the lines $v r, x s, y t$, be drawn at right angles to the horizontal line D Q drawn at pleafure, and the latter interfecting the joints in E, F, G; then it is evident, that if $D E$, expreffes the weight of the fone v, EF that of the fone x, and FG , that of the ftone y; the line CD , will exprets the force with which the ftone θ, preffes the vertical joint HA ; CE, the force with which the flones v, x, prefs the joint I b, and CF, the force with which the fones x, y, prefs the joint K_{e} : for three powers are in equilibrio with each other, when they are as the fides of a triangle which are perpendicular to their direction; and the fide DE, is perpendicular to the direction $v r$, of the weight, and the fides CD, C E, perpendicular to the directions of the forces with which the fone $\boldsymbol{\eta}$, preffes againft the joints C H, C I: Again, E F, is perpendicular to the direction $x s$, of the fone x, and $\mathrm{CE}, \mathrm{C} \mathrm{F}$, perpendicular to the directions of the forces with which the ftone x preffes the joints CI, C K; the fame thing is true in regard to any other ioint.

Since therefore the fame line C E expreffes the forces with which the ftones x, y, prefs each other in conurary directions, they deltroy each other; again as the

,
the fame line C F, expreffes the forces with which the ftones x, y, prefs each other in contrary directions, they likewife deftroy each other; and this is true in regard to any other two adjacent ftones. Confequently, if the weights of the ftones are to each other as the lines DE, E. F, F G, they will be in equilibria with each other.

Whence, if the curve HIKLM be fuch that the fpace A HI b, be always equal to the correfponding triangle CDE, it will be that required, becaufe the height C D, of that triangle is given, its area will be as the bafe D E.

Now becaufe the circular fectors defcribed by the radii C E, C b, CI, in the fame time, are as the fquares of thefe radii, and fince thofe fectors are likewife as the fluxions of the fpaces CDE, $\mathrm{CA} b, \mathrm{CHI}$; and the difference between the two laft is equal to the firft, by what has been proved; the difference between the fquares of the radii CI, C b, will likewife be equal to the fquare of the radius CE .

Hence, when C E becomes C D, CI becomes C H and $C b$ becomes C A : therefore the fquare of CD is equal to the difference between the fquares of the height CA , and CH at the key-ftone, which being given, the line $D Q$ will be given in pofition, and from thence the curve may be defribed.

Though we have fuppofed the interior cuive given, yet it is manifeft, the folution holds equally good when the exterior curve is given.

When the interior curve A B, becomes a right line parallel to DQ ; the exterior curve $\mathrm{H} M$, will alfo be a right line parallel to $\mathrm{D} Q$. For becaufe CE will be to $\mathrm{C} b$ as C D to CA in this cafe; and therefore C E and C I will be in a conftant ratio; viz. in the ratio of CD , to the root of the fum of the fquares of CD and C A. Which fhews that flat ceilings made of fones, to as all the joints meet in the fame right line, or flat arche ${ }_{\text {t }}$,
arches, if we may call them fo, will have all their ftones in equilibrio.

PROBLEM XXII.

To confruct the exterior curve H M, wiben the interior A B is given.

Cafe r. Let the interior curve A B be a quadrant of a circle, defcribed from the center C with the radius C A or CB ; and fuppofe the thicknefs A H or length of the key-ftone to be given; then if B D be made equal to CH , and through the point D , the indefinite line $D Q$ be drawn parallel to $C B$.

If after having drawn feveral radii C I, C K, CL, $C M$; interfecting $D Q$ in E, F, G; you make one of the legs $a \in$ of a right angled triangle $a c g$, equal to CA ; and you take upon the other always $c e=$ $\mathrm{C} \mathrm{E}, c f=\mathrm{C}, c g=\mathrm{CG}$, and then $\mathrm{CI}=a c$, $\mathrm{CK}=a f, \mathrm{CL}=a g$; the curve paffing through the points H, I, K, L, will be the required one.

For becaufe $C A, C B$, are equal by fuppofition; and CH, BD, by conftruction, the fquare of CD will be equal to the difference between the fquares of $C H$, or $B D$, and $C A$; and fince, $C A, C a ; C E$, $c e$ and $\mathrm{CI}, a c$, are equal, the fquare of CE or $c e_{\text {, }}$ will be equal to the difference between the fquares of CI and $\mathrm{C} b$ or CA ; confequently the curve HL is that required.

Fig. 17. Cafe II. Let the interior curve A B be a circular arc defcribed from the center C , with the tadius CB or CA , and let the part AH of the radius drawn through the vertex A, exprefs the given thickhefs of the arch in that place; on CH as a diameter defribe the femi-circumference of a circle HMC ; take CM equal to CA , and in CA ; CD equal to $\mathbf{H M}$; and draw the indefinite right line $D Q$ parallei to the horizontal line CB ; then, after having taken, upon
upon one of the legs $c a$ equal to $C A$, of a right angled triangle acg, and upon the other $c e, c f ; c g$, refpectively equal to the lines $C E, C F, C G$; you make CI, CK, C L, equal to the correfponding lines ae, $a f, a g$; the curve line HIKL paffing through the points $\mathrm{H}, \mathrm{I}, \mathrm{K}, \mathrm{L}$, will be the required one.

For becaufe C M, C A and CD, HM are equal by conftruction; the fquare of $C D$ is equal to the difference between the fquares of CH and CA ; and fince we have allo C A, CE, C I, equal to ca, ce, ci, refpectively, it follows that the fquare of CI is equal to the difference between the fquares of CA , and CE ; confequently the curve HKL, has been rightly conftructed.

This probiem has been given at the beginning of the fifth fection, book the third of our mathematical. treatife, not only for arches generated by a parallel, but likewife for fuch as are generated by a circular motion; to which the reader is referred, if he wants to know all the different cafes.
We have endeavoured in this fection to give all the different problems that poffibly can happen in practice, relating to this fubject; and to render it of more general ufe, we have given the table of the dimenfions of piers for feveral openings of powder magazines; and though the arches are fuppofed to be circular, yet the fame dimenfions may ferve for elliptic; or parts of circles. For in all the different kinds of arches, the thicknefs of the piers of the circular one has always been found the greateft, contrary to the erroneous notions of other authors; who have looked upon the circular one as the ftrongeft and the beft, without being able to give any other reafon than becaufe all the joints meet in the fame point; not confidering that the fame thing is fo in all arches, made of parts of circles; and as the fineft bridges in Europe are built with elliptic arches, it is manifeft, that they are able to fuppoft the weight with which they are loaded; befides we have
have fhewn that they require about one third lefs mafonry; it mutt therefore be allowed that they are preferable to the circular ones, efpecially when it is confidered that they look more beautiful to the eye, and their flope is much lefs; which on the contrary is fo very high in Wefminfer-Bridge, that it is with the utmoft difficulty, that heavy loaded carriages can get over it; though in many other refpects, one of the fineft in Europe.

It is alfo eafy to fhew that powder-magazines, made with elliptic arches, have the advantage over circular ones in many cafes. For in forts, or wherever the ramfarts are low, it is impoffible that circular powder-magazines can be built io low as not to be feen by the enemy from without, who therefore will endeavour to deftroy it as foon as he can, knowing that the furrender of the place depends on it; and if they are built under ground, the powder can at leaft no longer be kept in it than during a fhort fiege, otherwife it would foon grow damp, and lofe its ftrength : whereas an elliptic arch may be made much lower. Nor will the fhells have a greater effect upon thefe than on the others, becaufe the weakeft part is fufficiently covered with mafonry, fo as to be in no danger; and as to the hanches, they are more curvated than the circular ones, and of confequence are ftronger in that place.

The two laft problems are particularly ufeful in building of bridges, becaufe the arch-ftones being in equilibrio with each other, it is manifeft, that the bridge will be ftronger, than when they are made in any other form: it is true that the upper part of a bridge cannot be made in this form, unlefs it is of one arch only; fince the paffage muft have a regular afcent and defcent: yet neverthelefs, the arch-itones being formed in this manner, and the reft of the fide walls being finifhed in the ufual way, the overplus of the weight is not fo very confiderable as to produce any very great alteration in refpect to the force of the arch ftone.

Befides

Donteaty Google

Befides when a bridge is built otherwife, that is, in the ufual manner, the weakeft part is loaded with a fupernumerary weight, as well as the ftrongeft, whereby it remains ftill the weakeft, and and if that part is more loaded in proportion than the reft, the force to refift that weight muft be weakened: on the contrary, the greateft part of the weight being in equilibrio, the remainder cannot caufe fo great a difference, as in the ufual manner.

S E C T. III.

Of the Strengthand Quality, of

TIMBER.

AS the ftrength and goodnefs of a building entirely depends on the well proportioning and uniting the whole together, in fuch a manner, as every part thereof may be equally ftrong; and as we have in the firt fection given tables of the thicknefs of walls which fupport earth, of any height, and according to any nope, that may be ufed, as likewife hewn how to find the proper thicknefs of piers of vaults and arches of any form or opening; it remains now to treat of the different kinds of timber, and of their quality, as well as of their ftrength, in refpect to the different poGition in which they are made ufe of; efpecially of thofe moft commonly employed in buildings; in order to render this work as ufeful as is poffible, and thereby enable a young engineer to judge whether a building already excuted, is compleat in all its parts, or when a building is propofed, to make all its parts in due proportion, in fuch a manner as to be every where equally ftrong and good, and to avoid all needlefs expences; which is the point of greateft perfection that can be attained in the art of building.

Of the Nature and Quality of TIMBERS.

Of all the different kinds of timber known in Eucope for building, oak is the beft in all refpects, becuufe when it is well feafoned and dry, it is very tough and hard, it does not fplit fo eafy as other timber, and bears a much greater weight than any other whatfoever; when it is ufed under cover, it never perifhes, no more than in water; on the contrary, the older it grows, the harder it becomes; and when it is expofed to the weather, it exceeds all other timber whatfoever for durablenefs.

Fir timber is the next in degree of goodnefs for building, efpecially in this country, where they build upon leafes; for it lafts pretty long, when under cover ; is very light, and is the cheapeft timber that can be bought. It differs from oak in that it wants not fo much feafoning, and therefore no great fock is required before hand: whereas oak muft be kept at leaft a twelve month, and the longer it is kept the better it is; on the contrary, fir is much ftronger while the refinous particles are not exhaufted, than when it is very dry, as I have found by feveral experiments : Fir is ufed for flooring, above all other kind of wood, for wainfcoting and the ornamental parts of building within doors; it lafts likewife a great while under water; fome pretend, that it never perifhes there, no more than oak.

Elm is the next wood in ufe, efpecially here and in France, where it is plenty; becaufe it is very tough and pliable, it is eafily worked, and does not eafily fplit, it bears driving of bolts and nails into it better than any other wood: for which reafon, it is chiefly ufed by wheelwrights, and coachmakers, for fhafts, naves, fellows, and other fuch like things, and is almoft the only kind of wood ufed in artillery.

Beach is alfo very ufeful upon many accounts; it is very tough and white when young, and of great ftrength, but liable to warp very much when expofed to the weather, and to be worm-eaten when ufed within doors; its greateft ufe is to make planks, bedfteds, chairs, and other houfhold goods; and they ufe it likewife abroad, for axletrees, fellows, and in other wheelwrights works.

Afh is likewife a very good wood, but very fcarce in moft parts of Europe; it ferves in buildings, or for any other ufes where it is fkreened from the weather; hand-fpikes and oars are chiefly made of it, and indeed it is the only wood that is fit for this and any other things which require to be tough and pliable.

Wild chefnut timber is by many efteemed to be as good as oak, and feems to have been much ufed in old buildings; but wherher thefe trees are not fo common at prefent as they have been, or have been found not to anfwer fo well as was imagined, it is certain that this timber is quite out of ufe at prefent.

There are befides many other kinds of woods, which are efteemed ufeful upon fundry occafions, fuch as Englifb and Virgina walnut, mahogony, cedar-wood, rofe a'nd box-wood, for turners and cabinet-makers works; but as we intend to confine ourfelves to thofe woods only which are ufed in building; fo the following obfervations, fhall extend no farther than to thofe mentioned above.
O_{ak} may be diftinguifhed into three forts, wiz. that which grows on high gravelly ground, in thick forefts, and that which ftands on the fkirts of forefts, in hedges, or any where elfe, in damp or low ground, where the air has a free circulation.

That which grows on high gravelly ground, is of a reddifh colour, not much unlike that of red fand; it is very brittle, cuts very foft, rots foon, and is neither good for building nor burning; for it never produces
any flame no more than if it was rotten, for which reafons we fhall fay no more of it.

That which grows in thick forefts, where the air has no free circulation, is very tall and ftrait, without knots, fplits eafily, and has a very fine whitifh grain; it is therefore very good for building, and for any other carpenters work; it makes exceeding fine planks for all forts of cabinet works, its natural colour and grain being fo beautiful as no other wood can fcarcely exceed; but as this wood is very tender and fplits eafily, it is not good for fhip building, and therefore never to be ufed therein but when no other is to be had.

The third fort, which grows in foft ground, and where the air freely circulates, is very hard and tough; it is never fo tall nor fo ftrait and fmooth as that in thick forefts; but is the beft that can be ufed for building of fhips; efpecially if it ftands in a wet foil; I have feen fome that grew in a damp meadow ground which was fo tough that the fplinters would twift like ropes without breaking; If I miftake not, this is the reafon that the Englijb oak is fo much better for building fhips than any other in Europe; becaufe the foil where it grows is generally damp, and low, and the forefts are not fo thick as they are elfewhere, by which the air circulates freely; whereas that which comes from Norway or other parts of Germary ftands very thick and in great forefts, for which reafon it is fo tender and fo good for carpenters and joiners work.

Fir may likewife be diftinguifhed into three different forts; the red, or yellow and the white, and a fort between both. The red is by much the beft and the moft durable; becaufe it is much more impregnated with rofin or turpentine, which fills it pores, and prevents the water or dampnefs from entering, and therefore is more able to withftand the weather than the other : I believe that this is the fort from which pitch and tar is extracted; this fort is always ufed in works that
are expofed to the weather, and for ftakes, to drive in the ground, but then it fhould be burnt in the fire and pitched over while warm, which will preferve it much longer; it has likewife been obferved, that it does not decay under water; and it is the beft for carpenters work.

The white fort is not fo ftrong nor fo durable, but is very good for the infide of a building; fuch as for flooring, doors, wainfooting, and other fuch like works; its colour and fimoothnefs of grain makes it preferable for that ufe to the red fort; as to the third fort, it partakes of both qualities, is neither fo frong and durable as the red, nor fo beautiful as the white; but ferves well enough for all forts of timber in buildings where it is not expofed to the weather,

As to the elm or afh, I cannot find more than one fort of each; yet it is likely that the different foils in which it grows muft make it either tougher, and ftronger, or britule; as likewife that which grows in the open air mult be ttronger than that which grows in thick forefts. For all timber and plants in general grow ftrongeft in a free air.

Beach, which grows in thick forefts, is fofter and more brictle than that which grows in the free air; and is very white and tough when young; therefore wheelwrights ufe no other than what is very young, and what is no bigger than the fcantlings require; efpecially when ufed for axletrees, but for fellows they fplit it into two only; but that which is fawed into planks is much larger, and ought not to be too old, otherwife its grain is very coarle and the wood very brittle.

The goodnefs of timber not only depends on the foil and fituation in which it ftands, but likewife on the feafon in which it is felled; in which architects difagree very much; fome will have it felled as foon as its fruit is ripe, others in the fpring, and many in autumn or the fall of the leaves: and there are fome who pre,
tend that it fhould be felled in the increafe, or full of the moon, imagining that all things increafe in the fame manner; but we fhall leave thefe moon-blind gentlemen to their own lunatic judgment, and give the moft rational opinions concerning the propereft feafon in which timber ought to be cut. Since fap, as well as any other moiftnefs, is certainly the caufe that timber perifhes much fooner than it otherwife would do; which appears from timber expofed to the weather not lafting fo long as that which is under cover, as likewife that dry timber, when ufed, is more durable than that which is frefh cut; this being the cafe, it is manifeft that timber hould be felled when there is the leaft fap in it; which is from the time that the leaves begin to fall to the time that the trees begin to bud; that is from the middle of OEtober to the middle of March; the greateft number of architects agree with us, that this is the beft feafon for felling timber.

The weather has likewife an influence over timber; for if it be felled in damp and rainy weather, it will not dry, and if it lies too long in this ftate, the fap will moulder and caufe the timber in time to rot: but if the weather be dry and fair, it is plain that the air will draw out the fap and the timber will be more lafting.

When timber is cut, the bark fhould be taken off and let lie for fome time expofed to the fun and weather, and afterwards cut into rough fcantlings nearly of the fize they are intended to be ufed, and then laid up in ftakes under cover to fecure them againft wet wea. ther and the heat of the fun; for the wet hinders it from drying, and the heat of the fun fplits it. As oak feems to contain more fap than any other wood, and therefore requires a longer time to dry; the beft way to make it foon fit for ufe, is, as foon as it is cut into fcantlings, to throw it into water; 'this has been found by experience to draw out the fap much fooner than the weather; for the outfide will in a fhort time grow as black as ink, which is a certain proof, that
water draws out the fap, in a fhorter time than the air. As to the feafoning of any other kind of timbers, I never heard of any other method, than to ftake it up in piles, in fuch a manner as that the air may freely pais between; and to cover it from the rain and the heat of the fun. The time required for drying timber before it is ufed is very uncertain, fome forts require much more than others: oak mult be kept a great while; for the dryer it is, the harder and ftronger it grows : this we find by experience: for oak of an old building, or of a hip, is fo hard fometimes, that tools will fcarcely cut it.

Beach requires likewife a great while drying; and if it is ufed before it is thoroughly feafoned, it warps very much; and it may be obferved in general, that the heavier the wood is the longer it requires to dry: it may be known whether any timber is dry and found by friking with a hammer pretty hard at one end, and if it founds clear and diftinct, you are certain that it is both found and dry.
Fir being a light wood requires lefs time to dry than any other fort ; fir fcantling for roofing or for any other ufe within doors, ought to be half dry only; becaufe it is then ftrongeft, as we have found by fome experiments, which fhall be related hereafter; but as to the boards for flooring and wainfcoting they ought to be thoroughly dry, otherwife they fhrink and fooil the work.

Timber fhould likewife be cut when of a proper age; for when it is either too young or too old, it will not be fo durable. It is faid that oak fhould not be cut under fixty years old, nor above two hundred; whether this is right or not, it is very certain that all timbers fhould be cut in their prime and nearly when full grown; and before they begin to decay; that will be fooner or later according to the drynefs or moiftnefs of the foil in which they grow: as alfo according to the bignefs of the trees,
and the kind of timber: there is therefore no certain rule to go by in felling of timber, but experience and judgment muft direct here as well as in many more cafes.

Metbod of romputing the frength of Scantlings.

Mr. Parent is the firft that we know, who has treated this fubject in a fcientific manner, and in order to enforce his demonftrations, he made feveral experiments, with various fcantlings of oak and fir; by which he found that the ftrength of an oaken fcantling is to the ftrength of a fir fcantling of the fame fize as B is to 6 : fo that according to this experiment, fir wood is ftronger than oak; Mr. Belizior has alter him treated the fame fubject; and made likewife leveral experiments with oaken fcantlings, but as to the experiment in refpect to oak and fir, he took the foregoing proportion for granted. The fame opinion, that fir is ftronger than oak, has prevailed here; for, according to Langley, there was an act of parliament made, after the great fire in London, to fettle the dimenfions of fcantlings, in which thofe of oak are always larger than thofe of fir: But as this appeared to me contrary to fenfe and reafon, I refolved to try the experiment myfelf, and found exactly the contrary, as will be feen hereafter. As Mr. Parent was a man of veracity and character, we cannot imagine that he affirmed but what he really found; his oak mult have been weaker and the fir ftronger, than any I have met with which led him into this error,

PROBLEM 1.

To determine the frength of a fcantling whofe dimenfions are given. Plate VI, Fig. I,

We fuppofe that all the fibres of the wood are ftrait, and of the fame ftrength in its weakeft part, that is where it breaks; for it is no matter how they are elfe4 - where;
where; and that the fibres are the fame in the fame fort of wood ; alcho' this is not ftrifly true, yet it is fufficiently near in prattice fo as to caufe no fenfible error.

Suppofe the fcantling ABC to be fupported in the middle D by the edge of a triangular block R, and two equal bodies, P, Q, to be fufpended at A and C , equally diftant from the middle B; of fuch a weight as juft to break the fcantling.

It is evident that the weights P and Q will caufe the fcantling to bend at firft fo as to make a kind of a curvilinear angle at B , and then to break in that place, in a fection BD perpendicular to either of the fides AC: now as the power or force of thefe weights is more or lefs, according as they are furpended farther from or nearer to the point fix D; thefe forces will therefore be in proportion to the products of the weights each multiplied by its refpective diftance from the fection BD ; or becaufe the weights and diftances are here fuppofed equal, twice the product of one of the weights P multiplied by its diftance, from the fection B D, will exprefs the force of thefe two weights.

Having determined the force of the weights, we are now to determine the refiftance or ftrength of the wood; which is done in the following manner. Let $a c b$ reprefent the fection of the fcantling; it is evident that this area reprefents the fum of all the fibres to be torn or broken, and as they are all equal and of the fame flrength by fuppofition; this area will exprefs the fum of the ftrength of all the fibres: but as the point D , or the bafe $a b$ of the fection is fix; and the directions of the fibres perpendicular to the area $a c b$: the force or refiftance of each fibre is equal to the product of its ftrength multiplied by its diftarice from the bafe $a b$: and therefore the fum of atl the fibres placed in the fame line $d f$, parallel to the bafe $a b$, multiplied by their diftance $a d$, from that bafe $a b$, will exprefs their momentum or refiftance: What has been proved
in regard to all the fibres placed in the line $d f$, is equally true of all thofe placed in any other line parallel to the bafe $a b$: and therefore the fum of all thefe products will exprefs the total ftrength or refiftance of the wood: But by a noted property of the center of gravity, the product of the area $a c b$, multiplied by the diftance of its center of gravity, from the bafe $a b$, will exprefs the total ftrength or refiftance of all the fibres; or that of the whole feantling. Confequently, having the ftrength of any fcantling of the fame wood determined by experiment, that of any other may be found.

Fig. 2. If the fcantling $\mathrm{A} C$ be fupported at both ends by the triangular blocks P, Q, and the weight W ; hanging in the middle B : then if we fuppofe the weights P and Q in the laft figure to reprefent the blocks P and Q in this; and as each block fupports half the weight W ; it is evident that the weight W , multiplied by the diftance AB or BC, will exprefs its momentum or force.

The fame otberwife.

Since the weight W , is furpended in the middle between the point fix; it is evident that each block fupports exactly half the weight ; and as the power or force of this weight on the blocks P, Q, is as the product of half the weight multiplied by the diftance A B or BC of its direction from the point fix: It follows that the whole force of this weight is as twice the product of half the weight W multiplied by A B or B C : or as the whole weight W , multiplied by the diftance $\mathrm{A} B$, or BC.

COR. 1.

Hence, if the length A C of the fcantling between the points fix A, C, be c; the area of the fection s; the diftance of its center of gravity, from the bafe d, and the weight W, w; then will $\frac{1}{2} c w e$ exprefs the force of the weight W , and $d s$, the ftrength of the fcantling: there-
therefore the momentum of the weight is to the momentum of the fcantling as $\frac{1}{2} c w$ is to $d s$; or as w is to $\frac{2 d s}{c}$; or if this ratio be given $w=\frac{2 d s}{c}$.

From whence we may draw feveral ufeful confequences, 1. The ftrengths of two fcantlings of the fame wood, and of different dimenfions', or, which is the fame, the weights they will bear, are to each other as the products of their fections multiplied by the di= ftances of the centers of gravity, from the bafe, divided by their lengths.
2. The ftrengths of two fcantlings of the fame wood, which have the fame length; are as the products of their fections multiplied by the diftances of their centers of gravity from the bafe.
3. The ftrengths of two fcantlings of the fame wood, which have equal fections, are as the diftances of their' centers of gravity, divided by their lengths.
4. The ftrengths of fcantlings of the fame wood; whofe diftances of the centers of gravity of their fections from the bafe are equal, will be to each other as their fections divided by their lengths.
N. B. We have taken no notice of the parts of the fcantlings at each end, which are beyond the points A, C, and which ferve to fupport them on the blocks ; for they caufe no difference in refpect to their ftrength : the fame thing may be faid in refpect to the weights of the fcantlings; which are fo fmall in proportion to the weights they bear, that there is no occafion to confiderthem; becaufe there is no geometrical exactnefs required, nor can be attained in practice. It may alfo be obferved, that when the weight hangs between the point fix ; the bafe to which the diftance of the center of gravity is referred, is the upper furface AC; fince it muft open and break firft at the lower D; whereas when the point fix is between the weight, as in the firft figure, it is the lower furface.

> COR.

COR. H.
Fig. 2. If the fection of the fcantling $\mathbf{A C}$ bea rectangle placed flat on one of its fides, which we eall b, and its height or other fide a; then will $a b$, exprefs the area of the fection; and the diftance d of its center of gravity frcm the upper bafe, will be $\frac{1}{2} \mu$; therefore the equality found in the firft corollary, $=\frac{2 d s}{c}$: becomes here wo $=\frac{a a b}{c}$. Which Ahews, that the firength of a reciangular fcantling laying flat on one of its fides; ; is as the product of the Square of its beigho uyltiplied by its bafe, and divided by its lengtb.

Hence a deal board of an inch thick and ten inches broad, being' placed on its flat fide, and then on its narrow fide; the force in the firtt cafe will be to the force in the fecond, as unity is to 10 . For the force in the firft cafe will be as 10 multiplied by the fquare of unity'; and in the fecond as unity multipled by the fquare of 10 ; that is, as 10 is to 100 ; or as unity to 10. So that if it bears 50 pounds when it lies flat, it will bear 500 when it lies on the narrow fide.

This is the reafon that all timbers in buildings are always placed on the fmalleft fide; becaufe they will by this means bear a greater weight, than if they were placed otherwife; and therefore fave a good deal of timber; and this in proportion as they are made higher.

EXAMPLE.

We may from hence likewife find, whether the proportions of fcantlings commonly given by carpenters are right according to their length; for which we thall choofe the dimenfions of fir-girđers as appointed by act of parliament, after the great fire of London; which are as follows.

Now

If we fuppofe, that the dimenfions of any one of thefe fcantlings be right, as for example that of 10 feet long; then we may find thofe of any other, whofe length is given, in this manner, Since thefe fcantlings ought to bear the fame weight or to be equally Arong; the product of the fquare 100 of the height multiplied by the bafe 8, gives 800 , which being divided by

Length	Breadh	Heiph
10	8	10
12	8.5	10
14	9	10.5
16.	9.5	10.5
18	10	11
20	11	12
22	11.5	13
24	12	14

If we fuppofe the length c to be. 12 feet op 1.44 inches, and the height a, 10 inches; then by fubftituting thefe values into the laft equality, it becomes $\frac{20}{3}=\frac{100 . b}{144}$; and if 20 bemultiplied by 144 , and 3 by 100; the former product divided by the latter gives 9.6 inches for the bafe b, of the feantling; which is I .1 inches more than that above.

In the fame manner may be found the dimenfions of all the other fcantlings, whofe lengths and heights are the fame, which gives the following table.

The breadths of the fame fcantlings being compared, it appears. that thofe whofe lengths are 12 , 14, $16,18,20$, are too little in the former table, and thofe of 22 and 24 feet long, too great: which thews that practice alone is not fufficient to determine the proper fize of fcantlings; and that without the application of mathematical principles, no great improvement can be expected in any me:
 rant workmen infinuate.

As to the dimenfions of oak fcantlings given by workmen, we fhall not compare them, till we have given the following experiments, we made with great accuracy, and upon which the reader may depend.

EXPERIMENTI.

The flicks ufed in this experiment were 24.5 inches long from one end to the other, and half an inch fquare; they were laid on two truffes well fquared, and flood 20 inches diftant from each other; fothat the length of the fticks is to be confidered as no more than 20 inches; the remaining part ferving only to reft upon; the weights were fufpended in the middle by a ftring, fuch as juft to break the fticks, and are as marked underneath.

$$
\begin{array}{ll}
\text { Two dry oak fticks }\left\{\begin{array}{l}
69 \mathrm{lb} \\
\text { A dry firftick } \\
\text { A dry elm ftick }
\end{array}\right. & 46 . \\
3 \mathrm{I} .
\end{array}
$$

The firft oak ftick feems to have been thorougly dry; I had it from the dock, and likely was taken out of an old fhip; the fecond I had out of the warren as dry as could be had; the grain of the wood was ftrait in both; but that of the firft was finer than that of the fecond, and of a deeper colour; which, if I am nat miftaken, denotes, that the tree was in its prime when felled.

The fir ftick did not bend fo much before it broke as the oak; it was of the reddifh kind, and the ftrongeft that could be found: As to the elm it bent very much before it broke; and as this laft is fo weak, we did not think proper to try any more of it in the following experiments.

EXPERIMENTII.

Two oak fticks cut out of an old axletree $\left\{\begin{array}{l}55 \mathrm{lb} \\ 54 .\end{array}\right.$ An oak ftick cutout of a fpoke of a wheel $5^{66.5}$
Three fir fticks out of the fame piece $\left\{\begin{array}{l}36.5 \\ 36 \\ 36\end{array}\right.$
A fir ftick of an equal fection, whofe bafe and height were as 2 to 3 . 42.5 .

The oak fticks in this experiment had a coarfer grain than thofe in the former, and feem to have been of an older tree; as to the fir ficks no difference could be perceived, either in the grain, colour, or any thing elfe, from the former.

By thefe experiments it plainly appears, that oak is ftronger than fir, contrary to thofe made by Mr. Parent, and common practice: for the weakeft oak is ftronger than the ftrongeft fir in the firft experiment: in proportion as 25 to 23: But thofe in the fecond experiment, make a much greater difference, viz. as 54 to 3^{6}; or as 3 to 2: And if the ftrongett oak ftick in the firt experiment be compared to the ftrongett fir ; the proportion will be as 69 to 46 ; or as 23 to $15 \frac{1}{3}$; or as 3 to 2 ; that is the fame as before; which is very confiderable, and therefore deferves to be taken notice of.

As the ftrength of the fame kind of wood varies very much, it is impoffible ever to come to an exact knowledge of the juft proportion between the ftrength of oak and fir; but we are certain that oak is the ft rongeft of the two.

As the leaft porportion we have found, viz. that of 25 to 23 , is very nearly equal to that of 9 to 8 ; fo by making the oak fcantlings lefs in that proportion, there will be no danger of their being too fmall, only it muft be noted, that oak ought to have been cut a twelvemonth before it is ufed, as we have obferved before, whereas
whereas fir does not require above fix months feafoning.

As the laft fir ftick had the fame length, and an equal fection with the others, it is plain that its ftrength is to that of one of the others, as the height of the firt is to the height of the fecond, by what has been proved before: and if x be the height of the laft ttick, then will $\frac{2 x}{3}$, be its bafe, and $\frac{2 x x}{3}=a b$, or becaufe a and b are each $\frac{1}{2}$ or .5 : we have $\frac{2 x x}{3}=25$; or $x x=$:375; whofe fquare root gives $x=.611$, or 6 nearly ; that is the ftrength of the laft ftick is to that of any of the former as 6 is to 5 : Now if we fay as 6 is to 5 , fo is the weight 43.5 , this ftick bore, to the weight 35.4 nearly, whereas it bore the weight of 36 pounds; this difference is inconfiderable, confidering that the weight cannot be fo nicely obferved, to come within 2 or 3 ounces; and befides, the fticks were not fo exactly of the given dimenfions, as that no difference might arife from thence. So that this experiment, confidering fo fmall a difference, anfwered the theory pretty nearly.

Having determined the proportion between the ftrength of oak and fir fcantlings, it remains now to determine the dimenfions of oak girders, from thofe of fir; in which we fuppofe that a fcantling of fir, being 10 .feet in length, 8 inches in breadth, and 19 high, is fufficiently ftrong, and from thence all the fucceeding ones both of fir and oak have been deter. mined.

TABLE I .

TABLE I. Containing the dimenfions of girders.
The lengths are expreffed in feet, and the breadths and heights in inches.

F	$I R$.		O A K.		
Length	Breadth	Herght	Leagth	Breadth	Height
10	8	10	10	7	10
12	8	11	12	7	11
14	9	11. I	14	8	11.1
16	9	I 1.9	16	8	11.9
18	10	12	18	9	11.9
20	10	126	20	9	12.5
22	11	12,6	22	10	12.5
24	11	13.2	24	10	13

For, according to the equality $w=\frac{a a b}{c}$ above, if $c=10$ feet or 120 inches, $a=10, b=8$; then will $w=\frac{20}{3}$; and $\frac{20}{3}=\frac{a a b}{c}$; now if $c=12$ feet or 144 inches, $b=8$; then will ${ }^{20}=\frac{8 a a}{144}$ or $a a=120$, whofe fquare root is in nearly, for the fquare of 11 is 121 . In the fame manner are found all the fir fcantlings: And if we reduce $\frac{20}{3}$, in the proportion as 9 to 8 ; we thall have $\frac{160}{77}$ for the ftrength of oak fcantlings: that is $\frac{260}{2 T}=\frac{a a b}{c}$

Hence if $c=10$ feet, $b=7$; then will $\frac{160}{\frac{60}{7}}=\frac{7 a a}{120}$ or $a a=101$, whofe fquare root is 10 nearly; which is the fame as in the table; the reft of the oak fcantlings are found in the fame manner.

TABLE

TABLE II. Containing the dimenfions of fir joifts common and trimming.

Common.

Length	Breadth	Height
6	2	8
8	2.5	8.2
9	3	8
10	3	8.4
11	3.5	8.1
12	4	8

Trimming.

Length	${ }^{\text {Breadth }}$	Height
5	3	7
6	3	7.6
7	3.5	7.6
8	4	76
9	4.5	7.6
10	5	$\frac{7.6}{7.6}$

The dimenfions of the firf fcantlings in each table, are fuppofed to be of a fufficient ftrength, and the reft are from thence determined. For if $c=6$ feet or 72 inçes, $b=2$, and $a=8$; then will $\frac{10}{9}=\frac{a a b}{c}$; and if $c=8$ feet, $b=2.5$; then will ${ }^{16}=\frac{2.5 a a}{9^{6}}$; or $a a=68.26$, whofe fquare root is 8.2 ; the fame as above.

But if we fuppofe that $c=5$ feet, $b=3$, and $a=7$; then will $\frac{4}{2} \frac{9}{9}=\frac{a b}{c}$, by which the fecond table is conftructed. For if $c=6$ feet, $b=3$; then will $\frac{40}{2}=$ $\frac{3 a a}{7^{2}}$, or $a a=58.8$; whofe fquare root is 7.6 , nearly.

TABLE

Sect. 3. FORTIFICATION.
TABLE III. Containing the dimenfions of fir bridging joifts.

In fmall Buildings.

Length	Breadrh	Height
6	2.5	5
7	2.5	5.5
8	2.5	5.9
9	3	5.6
10	3	6
11	3	6.2
12	3	6.5

Length	Breadth \mathbf{H} sht	
6	3	5.4
7	3	$\frac{5.8}{}$
8	3	6.2
9	3	$\frac{6.6}{3}$
10	3	6.7
11	3.5	6.8
12	3.5	71

If we fuppofe that $c=6$ feet, $b=2.5, a=5$; then will $\frac{125}{1+4}=\frac{a a b}{c}$. by which the fecond table is conftructed, and if $c=6$ feet, $b=3, a=5.4$, then will $7 . \frac{20}{6}=$ $\frac{a a b}{c}$, by which the fecond table is conftructed. It may be obferved that carpenters alway allow larger fcantlings in large buildings than in fmall ones, and they muft be ftronger, than barely to fupport the weight they are to futtain.
$N . B$. The reader will find the feveral names of the timbers mentioned in thefe tables explained in the latter part of this work, where we treat of timber frames and roofings.

TABLE IV. Containing the dimentions of tie bexms

Fir.

Leneht	rrea	He:n
12	0	\because
10	7	$\bigcirc 5$
20	7	9.5
$\underline{2} 4$	7	10.4
28	8	105
22	8	11.3
36	8	12
40	9	12
44	9	12.3

Cak.

Lenoht	Brewh	H
12	5	3.2
16	6	87
20	0	9.7
24	6	10.6
28	7	106
32	7	11.3
$3^{\prime 3}$	7	12
40	8	12
44	8	12.6

By following the fame method as before, we fhall find $\frac{8}{3}=\frac{a a b}{c}$, for the equation by which the firt table is conitructed; and $\frac{7}{7}=\frac{a a b}{c}$ nearly, for that by
which the fecond is conftructed.

TABLEV. Containing the dimenfions of the principal rafters.

Of Fir.

Lenght	Breadth	Height
18	4	5.5
20	4	6.1
22	4	6.4
24	5	6
26	5	6.3
28	5	6.4
30	5	6.7
32	5	6.9
3.4	5	7.1
36	5	7.3
3^{8}	5	75
40	5	7.7

Of Oak.

Le.gth	Breadth	! eight
18	3	$5 \cdot 3$
20	4	$5 \cdot 7$
22	4	6
24	4	6.3
26	4	6.5
28	4	6.8
30	4	7
32	5	6.5
34	5	6.7
36	5	6.9
38	5	7.1
40	5	7.2

Sect. 3. FORTIFICATION.

Authors give various dimenfions to the principal rafters; Mr. Smith gives one fort, Mr. Price another, and Mr. Langley will have them to to be ftronger at the bottom than above; but, his is not followed by any workmen, as I am told; befides Mr. Price fays, that they fhould be ftronger in large buildings than in fmall ones, although of the fame length; I fee no reafon for any fuch practice; their ftrength ought rather to be in proportion to the weight of the covering; and to the diftances they are from each other: as authors do not agree in regard to the ftrength of rafters, we have, chofe a medium between them, for the dimenfions of the firt fcantling of each table.

TABLE VI. Containing the dimenfions of fimall rafters.

Of Fir.

Length	Breadth	t eight
9	2.3	4.7
10	2.4	4.9
11	2.5	5
12	2.6	5.2
13	2.7	$5 \cdot 4$
14	2.8	$5 \cdot 5$
15	2.8	5.6
16	2.9	5.8
17	2.9	59
18	3	6
19	3	6.1
20	3.1	6.2

Of Oak:

Length	3reasth	+ ght
9	2.3	4.6
10	2.3	4.7
11	2.4	4.8
12	2.5	5
13	2.6	$5 \cdot 2$
14	2.6	$5 \cdot 3$
15	2.7	5.4
10	2.8	$5 \cdot 5$
17	2.8	5.6
18	2.9	5.8
19	3	5.8
20	3	0

Thefe are the tables commonly given by carpenters and architects, concerning the dimenfions of fcantlings; but as their exactnefs depend on the dimenfions taken out of other authors, of the firft fcantling of each taG 2
ble, a fufficient ftrength, it is prefumed that the other fcantlings given here are all frong enough; and perhaps more fo than they need to be.

E X A M PLE II.

Fig. 5. Let a rectangular fcantling be placed edgeways, fo that B D be the diagonal, and let the fides ftill be reprefented by a, and b; then will $d=$ $\frac{1}{2} \sqrt{a a+} b b$; and therefore the equation $w=\frac{2 d s}{c}$; becomes $w=\frac{2 a b d}{c}$ in this cafe; and fince d or the diagonal BD is greater than any one of the fides; the fcantling will bear 2 greater weight in this pofition, than if it were placed flat on one of the fides: But as wood will yield at the point B, by the force of the weight fufpended there; the frength will be found fomething lefs than is expreffed by this equation.

EXAMPLE.

Let the fection of the fcantling be a circle, whole diameter is a, and area s; then will $w=\frac{a s}{c}$ be the equation, which thews that the force of a cylindric fcantling, is expreffed by the area of its fection multiplied by its diameter, and divided by its length; and therefore is to the force of a fcantling whofe fection is the circumfrribed fquare; as the area of the circle to that of the circumfcribed fquare.

It is alfo manifeft, that the ftrength of a triangular fcantling, when laid flat on the bafe, is double the ftrength when the edge is undermoft, fo as the bafe be parallel to the horizon. For the diftance of the center

Sect. 3. FORTIFICATION. of gravity from the bafe is half the diftance of that center from the vertex.
PROBLEM II. .

To find the weight a fcantling AC will bear, when it is fufpended any zobere betwoen the points A and C. Fig. 3 .

Since the block P, which is neareft to the point of fufpenfion B, fupports a greater part of the weight than the block Q , which is fartheft from it; we are to find the parts of the weight which each bears, in order to folve the problem. By the known rules of mechanics,' the whole length AC of the fcantling is to any part AB or B C, as the whole weight W, is to the part fupported by the block Q or P . If therefore we call A B, $m, B C, n$, and the reft as before ; we have $c: n:: x: \frac{n w}{c}=$ to the part fupported by the block P; and $c: m:: w: \frac{m w}{c}=$ to the part fupported by the block Q : Whence thefe weights being multiplied by their refpective diftances A B, B C, give $\frac{n m w}{c}, \frac{n m w}{c}$, for their momentums, and the fum $\frac{2 m n w}{c}$ mult be equal to the ftrength $d s$ of the wood by problem the firft, which gives $\frac{2 n m w}{c}=d s$, or $w=\frac{c d s}{i n n}$ for the weight required.

If we fuppofe the weight to be fufpended in the middle, then will $n=m=\frac{1}{2} c$; and the laft equation becomes $w=\frac{2 d s}{c}$; which is the fame as in the firt problem.

If the fcantling AC is rectangular, and its bafe be b, altitude a; then will $a b=s$, and $d=\frac{1}{2} a$; thefe values being inftituted into the equality above, gives $w=\frac{a a b c}{4 n m}$.

Since, when the weight is fufpended in the middle, we have $w=\frac{a a b}{c}$; it is evident, that the ftrength of the fcantling when the weight is fufpended in the middle, is to the ftrength of the fame fcantling, when the weight is fufpended nearer to one end than the other, as 4 nm is to $c c$: Confequently the weight any fcantling will bear when fufpended in the middle being known; the weight which that fcantling would fupport at any diftance trom either end, may be found by the laft proportion.

E X A M P L E.

Let AC be 20 inches, and the fection half an inch fquare; fuppofe the fcantling to be of fir, fuch as we ufed in the fecond experiment, which bore 36 pounds; and let A B be 5 inches; then will BC be 15 ; whence $4 n m=300$, and $c c=400$; therefore $3 c 0: 400:$: $36: 48=$ to the weight the fame fcantling would bear being fufpended at the diftance of 5 inches from either end.

This fhews, that in buildings, it fhould be avoided as much as poffible, to place the weight in the middle of a beam, fuch as king pofts are in roofs; and therefore it is more advantageous to ufe prick-pofts inftead of king-pofts; this is likewife what carpenters do in moft buildings where there is no partition wall to fupport the beam in the middle.

Fig. 4. It may likewife be obferved, that a fcantling A C of the fame ttrength with the former, will bear two weights W, W, each of 48 pounds, when their diftances AE, FC from the ends are 5 inches:
this appears plain from the foregoing example, becaufe thefe weights will caufe the fcantling to break in two places.

Mr, Parent is the firf we know, that has fhewn how to cut the ftrongeft fcantling pofible, out of a given tree: As this may be ufeful in practice, becaufe timber merchants are fenfible that the fquare is the greateft figure that can be inferibed in a given circle, and for which reafon they chufeto make all their timbers fquare, as being moft advantageous to them; we fhall infert the following.

PROBLEM, III.

Let AFBE, be the circumference of a tree out of which it is propofed to cut the frongeft rectangular fcantling that is pofible. Fig. 8.

Draw the diameter D G, at right angles to the parallel fides AE, BF, interfecting AE in P; then becaufe the ftrength of the fcantling is expreffed by A E $\times A E \times A F$, as has been proved in the firft problem; but by the property of the circle, we have $\mathrm{A}_{\mathrm{P}^{2}}=$ $D P \times P G$, and $A F=2 C P$; therefore the ftrength of the fcantling will likewife be expreffed by $8 \mathrm{DP} \times$ PG×CP; now becaufe this expreflion is the greateft of all pofible, when the fquare of CP is one third of the fquare of CD, by article 247 of our Elements of matbematics; or which is the fame, when the fquare of the bafe A F is one half of the fquare of the altitude A E: For becaufe the fum of the fquares of CP and PA, is equal to the fquare of the radius $C D$, by the property of the circle : and therefore if the fquare of C P is one third; the fquare of PA will be the two thirds of that fquare, confequently, the fquare of A P muft be double the fquare of CP ; or the fquare of AE double the fquare of AF.

CONSTRUCTION.

Fig. 7. Divide the diameter A B of the tree into three equal parts at C and D; and from the points C and D of divifion, draw DE perpendicular above, and C F , below the diameter; then if the points of interfections E, F, of thefe lines and the circumference, are joined to the extremities A, B of the diameter ; the rectangle A E B F, will be the greateft that can be infcribed in that circle.

For becaufe A D is two thirds, and D B one third of the diameter AB by conftruction, the fquare of $D E$, will be two ninths, and the fquare of AD four ninths of the fquare of the diameter; therefore the fquare of $A D$ is double the fquare of $D E$; and by the fimilarity of the triangles $A D E, A E B$; the fquare of $\mathrm{A} E$ is double the fquare of EB .

It has been obferved a great while, that when the bafe of a fcantling is to its height as 5 to 7 ; that it was nearly the ftrongeft of all the fcantlings whofe fections are equal, and infcribed in a circle; and becaufe the fquare of 5 is 25 , and that of 7 is 49 ; the former being nearly half the latter, exceeding by an unit only; this obfervation perfectly agrees with what has been proved in the laft problem.

PROBLEM IV.

If a fcantling be fupported at the ends by two blocks. \mathbf{P}, \mathbf{Q}, not placed in the fame horizontal line, and the weeight fufpended in the middle, to find the frength of this jcantling. Fig. 9.
From the point C in the vertical line, paffing through the edge of the higheft block Q , draw CE parallel to the horizon, meeting the direction of the weight in L , and the vertical line drawn through the edge be as the product of the fection multiplied by the diflance of its center of gravity from the point B. Therefore if we call C E, n, and the reft as before; we fhall have $\frac{1}{2} n w=d s$, by what has been proved before, confequently $w=\frac{2 d s}{n}$.

Hence, becaufe we have $w=\frac{2 d s}{c}$, when the fcantling lies horizontally, and cexpreffes its length: the ftrengths of the fcantling in thefe different pofitions are to each other reciprocally as the diftances of the directions of the weight from one of the points fix; that is the ftrength of the fcantling in this oblique pofition is to its ftrength in a horizontal pofition, as C B is to CL ; or as the radius is to the cofine of the inclination LCB.

For example, if the fcantling A C bears a weight of 3^{6} pounds, when placed horizontally; to find what weight it will bear when it makes an angle of 15 degrees; then becaufe the cofine 9659 of that angle is to the radius $\mathbf{3 0 0 0 0}$, as the weight 36 is to a fourth term, which gives 37.2 pounds nearly.

But if the angle of inclination is 60 degrees; then becaufe the conline of this angle is to the radius as 5 is to 10 ; the fcantling will fupport a weight 72 double the former. Whence it is plain, that as the angle of inclination increafes, fo the ftrength of the fcantling increafes likewife: and when that angle becomes a right one, or the fcantling becomes upright, its ftrength is not to be expreffed. But becaufe the fibres of wood are not always ftrait, and give way when preffed very

This problem is uffeful in finding the refpective ftrengths of fcantlings which are joined together, with different angles of inclinations; fuch as in the roofing of any building, and thereby fave unneceffary expences.

Fig. 10. It is not fufficient that the ftrength of fcantlings may be found, there are likewife fome pofitions that are more advantageous than others, which ought likewife to be known. For inftance, let $A B C$ be the pitch of a roof, and a ftrut EF, is to be placed fo as to fupport the rafter A B in the beft manner: I fay that when EF, is the bafe of an ifofeles triangle AEF; or, which is the fami, when it makes equal angles with the tie-beam AC, and the rafter A B, it is in its mott advantageous pofition; for the ftrength of this piece is proportional to the diftance of its direction from the point fix A; but the perpendicular drawn from the point A to the bafe E F is the greateft of all when the triangle is iforceles: Confequently, this is the beft pofition that the piece can have.

But if the ftrength of the tie-beam AC, is to be confidered, and there is no party wall to fupport it in the middle, the cafe is otherwife; for in that cafe the piece muft be upright as GH ; becaufe the nearer the point G approaches the point fix C , the lefs ftrength is required to fupport the piece G H. Hence it is manifeft, that a fcantling may be molt advantageoully placed in refpect to its own ftrength, but not in regard to other fcantlings to which it is joined: And confequently, in the framing of timbers for a building, not only regard muft be had to the ftrength of the ficantlings themfelves but likewife to thofe to which they are framed.

PROBLEMV.

To find the frength of thbe principal rafters A B, $\mathrm{BC}, \mathrm{f}_{\mathrm{o}}$ as to be proportional to that of the tiebeam A C. Fig. 10.

Let the bafe of the rafters be x, and their height $2 x$, that is double the bafe as they commonly are made: Let the bafe of the tie-beam AC be b, its altitude a, and half its length $A D, n$; then the ftrength of the rafter will be expreffed by $\frac{4 x^{3}}{n}$ by the laft problem; and that of the tie-beam by $\frac{a a b}{2 n}$ by the firf problem; therefore $\frac{4 x^{3}}{n}=\frac{a a b}{2 n}$ by, fuppofition, or $8 x^{3}=a a b$; whence the cube root will be $2 x=\sqrt[3]{a a b}$.

Hence becaufe the length A B of the rafters does not enter into the equation; it is evident, that whatever the pitch is, the cube root of the bafe of the tie-beam multiplied by the fquare of its height, will always give the height of the rafter. For example, a fir tiebeam of 12 feet long, is made 6 inches by 8 , according to the tables given before; then becaufe $a=8$, $b=6$; we get a a $b=384$, whofe cube root is 7.2 inches nearly; for the height of the rafters, and hence we get 3.6 inches for the bafe.
If the beam AC be 24 feet long; then the bafe is 7 and height 10.4 , according to the foregoing tables : whence $b=7, a=10.4$; and hence $a b=757.12$, whofe cube root gives 9.1 inches nearly, for the height, and 4.5 for the bafe of the rafters.

In the true pitch of a roof the principal rafters are the three fourths of the tie-beam, which being here fuppofed to be 24 feet long; and therefore the length of the principal rafters, will be 18 ; and according to the fifth table, their bafe is 4 and height 5.5 ; which
dimenfions are therefore in no proportion to that of the tie-beams. But then it muft be confidered, that the rafters are always fupported by ftruts or uprights, which, bearing a part of the roof, ftrengthens them and weakens the tie beam.

Thefe are nearly all the different problems we could thinks of, that may be ufeful in framing of timber works; which the reader ought to be well acquainted with, if he defigns to make any progrefs in the art of building; for what is found in moft authors on architecture, relates chiefly to practice, which alone is not fufficient to make any improvements: and it is no wonder, that for fo many ages as architecture has been cultivated, there has been fo little progrefs made, fince very few had any knowledge of thofe parts of the mathematics, which are neceffary to be known, and therefore I advife the reader to make himfelf mafter of them; before he enters upon the practice.

The theory of timber given here is of very great ufe both in civil and military architecture, fince we are taught thereby not only how to find the proper ftrength of fcantlings in refpect to their length, when placed in an horizontal pofition, but likewife when framed together, according to any angle of inclination, which practice alone could never have determined, to any degree of exactnefs: the entering into all the different applications that may happen in practice, would require more room than can be allowed in fo fmall a tract as this; for which reafon, we fhall give as much of it hereatter, as will be fufficient to young engineers, for whom this work has been pubiilhed.

PART

P A R T II.

Containing the Knowledge of the Materials, their Properties, Qualities, and Manner of ufing them.

BEFORE we enter into the manner of building the feveral works of a fortrefs, it is necefflary to be particularly acquainted with the feveral materials of which they are compofed, in order to diftinguifh their good and bad qualities, how to prepare and ufe them, in the beft manner, that the works may be durable and lafting; which ought in all fuch great undertakings be the principal view of an engineer, who is anfwerable for its fuccefs or mifcarriage; this he is by no means able to perform without having a thorough knowledge of all the materials of which it is compofed: But as thefe materials differ in their qualities in different parts of the country, where they are to be ufed; we Shall explain firt their general properties, and afterwardsin what they differ in different places.

> S E C T. I.

Of the Quality of Stones fuch as are ufed in Buildings.

STONES may be diftinguifhed into two forts, that is into hard and foft; the hard ftone, is that which is expofed to the open air, fuch as rocks, and thofe which lie loofe upon the furface of the earth, and
in Reparate blocks: the foft flone is that which is found in quarries and under ground; it is undoubtedly true that the hardeft ftones make the moft lafting works; but as there is feldom a fuflicient quantity of them, to build the whole fortification, the beft ferve in the facings of the works, in the foundations, and wherever, the works are bathed with water: for as the foundations fupport a great weight, they muft be made ftrong accordingly, or elfe the works will foon be deftroyed: therefore the outfide of rocks or the upper fones of quarries, being the hardeit, are ufed for that purpofe.

Altho the ftones of fome quarries are very foft and eafily worked when they are frefh taken out, yet when expofed for fome time in the open air, become very hard and durable : therefore an engineer, who is employed in any particnlar place, may at all times know by the inhabitants; which of the quarries, if feveral, produces the teft ftones; he may likewife find by the buildings of fome ftanding, the quality of them; this will enable him to referve the belt for fuch works as require moft ftrength, and the fofter fort may be ufed in the infide of the walls: but where there is but one quarry, he muft examine whether fome part is not better than others; in fhort, a judicious choice of the ma. terials, properly adapted, may render a building more latting, than uling them promifcuounly, as carelefs builders frequently do.

But if it happens that there is no quarry which has been opened long enough, fo as to judge of the goodnefs of the ftones, or where he is obliged to open new ones, he ought to expofe the ftones for a twelve month, at leaft, to the weather, both to heat and cold, before he employs them; then if they do not fplinter after a froft, or do not moulder into dirt, when rubbed, he may be affured that the ftone is good: and on the contrary, if they fplinter or moulder, it is a certain proof of their bad quality.

Sect. i. FORTIFICATION.

Mr. Boyle pretends, as he has been informed by workmen, that there is a fap in ftones as well as in timber, by which the fame fort of ftone and taken out of the fame quarry, if dug at one feafon, will moulder away in a very few winters; whereas if they are dug at another keafon, it will refilt the weather for a great many years, not to fay ages: but as he does not mention what feafon is beft, nor gives any reafon for what he advances; no rule can be gathered from what he fays: we may fay thus much, that they fhould always be dug in the fprirg, fo as they may have time to dry before the cold wearher comes in : for the heat of the fun will extract the greatel part of the moifture which otherwife expands in frofly weather, cautes the ftone to fplinter, as it has been obferved to do; altho' the ftone is otherwife hard and good.

The fame author fays likewife, that fome fort of fones will decay in a few years; and others will not attain their full hardnefs in thirty or forty years, nay even in a much longer time; and befides that there are quarries in fome places of folid and ufeful Itones, that, though being dug at a certain feafon of the year, prove good and lafting, yet when employd in a wrong time, moulder away, and perifh in a few years. That there appears a feminal Spirit, if I may call it fo, in ftone, is very probable; but what effect it has upon the ftone when feparated from its ftock is very uncertain, and therefore cannot be known but by a ftrict inquiry of a long courfe of practice.

The manner of drawing the ftones out of quarries, requires particular notice to be taken : for almoft all ftones lie in horizontal beds or ftratas; that is, they cleave in that direction; and they have likewife a breaking one, which is perpendicular to the former, both which directions mult be obferved. The method of drawing ftones out of quarries is thus: having uncoped it; that is, having removed the earth from the ftone, it mult be obferved where it will cleave, and there drive in a good many wedges gradually together, till
it is loofened from the rock, which being done, you next proceed to break it, which is performed in this manner; you mark the breadth of the fone with a ruler, and then cut a fmall chanel in which a number of wedges are drove, from four to fix inches diftant from each other, flowly and all together, left the ftone fhould break acrofs and not according to the mark; but it may be obferved, that this method is not always to be ufed, becaufe all the parts of a fone are not always of an equal hardnefs, but in fome places it may be hard and in others foft, which is perceived in the cutting the chanel, and thofe wedges which are in the fofter parts, are drove deeper than the other, in fuch a manner that all the wedges may prefs alike: this has been found by experience to be the beft way of breaking ftones.

Having thus broke them in length, which the ftonecutters can do, as they pretend, to any fize within lefs than half an inch, which is fufficient for any rough ftone; then you proceed to break them in breadth in the fame manner as before in length. When thefe precautions are taken, the firf expence is greater than if they were broke any how; but then there is little wafte in the ftones, the workmanhip will be lefs, and faves expences in the carriage.

But when the ftone is very hard they will not cleave fo eafily; for the workmen are then obliged to cut a pretty deep chanel, and fo wide as to lay two iron bars in it, and to leave room befides for the wedges to be drove in between them, by which means the ftones may be broken, which could not be done otherwife.

The workmen make at other times ufe of gunpowder to blow them up; which is performed in this manner : they make a fmall hole with a chife, of an inch or a little more in diamesers fometimes vertically, and at others horizontally, as is moft convenient, and as deep as they want to blow up ftones; this hole being cleaned clear of all duft and rubbifh, they put in fome powder, then the reft of the cavity is filled with the fame ftone beat
beat into duft, and rammed in as ftrongly as they can; in doing that they place a wire in the middle to preferve a vent to fet fire to the powder, and the rammer is hollow in the middle to receive this wire ; this being done, and the powder fired, breaks off as much fone as they pleare; and the pieces are broken into fuch blocks as are wanted. This way of breaking them is much cheaper than any other, but waftes a great deal more ftone, for which reafon it is never ufed but where it is fo plenty as that the fmall pieces are no lofs, and which may ferve as rubble to fill up the infides of walls.

There are feveral kinds of ftone; as marble, fire ftone, purbeck ftone, ray ftone, alabafter, free ftone and common fone : of each we fhall fay fomething in their order.

Marble is of various colours, as white, black, grey, green, fome varied with fpots and veins like the roots of trees; their nature and ufe are too well known to require any explanation; the marble found in England is moftly black, and fo very hard and difficult to polifh, that very little ufe is made of it, except to burn and make lime; which is frequently done about Plymouth, where fcarcely any other lime is ufed, as I am informed.

The fire ftone comes from Reygate, and ferves chiefly for chimneys, hearths, ovens, and foves, being a dry porous gritty ftone, which bears the heat without breaking, and it is, I fuppofe, on account of this quality that it has the name given of fire ftone.

Purbeck ftone is a hard greyifh ftone, and ferves chiefly for paving, coping of walls, and for all fuch ufes where ftrength is required, as being the moft hard and durable fone, after the P lemputte parble, we know: of; it is found upon the near the fea fide.

Rag ftone is that which is commonly ufed in paving, and is of a blueifh kind : but there is a tone called Kentif rags that are very ufeful in building; they fplit ve-
ry eafily and yet are very hard; a great quantity of this: ftone has been ufed in Wefminffer bridge; they are brought down the river Medway from fome place near Maidfone.

Alabafter is a clear whitifh fone not unlike marble; it. is very plenty in fome parts of Italy, but there is none to be found in England excepting in fome parts of Scotland, where it is faid to be very plenty, and much ufed for making lime, which is exceeding good.

Free fone is that which comes from Portland, an ifland near Dorfetbire, and is commonly called Portland ftone: this ftone is chiefly ufed in and abour London, in all great or finall buildings; it is a fine whitifh fone: without any veins, but very dear; for it cofts about ninepence a cubic foot upon the foot, and 16 cubic feet weigh a ton : this fone is very fofe when it comes out of the quarry, works very eafily and becomes very hard in time; the piers and arches at Wefminfer bridge are built with it. There is likewife a quarry of free ftone at Bath, of which moft houfes are built there: it has a fine whitifh colour, but I am informed that is not durable, and therefore is not fo fit for great heavy. buildings as the Portland tone.

When the ftones are drawn out of quarries and only roughly fquared, they are called afhler, but when they are fquared and finifhed, receive other names from the fituation they are placed. It may be obferved that when ftones are laid in the fame pofition as they are found in quarries, that is flat or horizontally, they will make better work than if they are laid any other ways: and they will cement ftronger together; this the workmen will not always oblerve, unlefs care be taken to make them do fo.

S E C.T II.

Of B R I CK S.

BRICKS are made here of various kinds and colours; and have various oames, as clinkers, famel or fandal, fătutè bricks, didoron, tetradoron', pentadoron, compafs, concave, featheredge, triangular, cogging, place and ftock bricks.

The compans bricks are of a circular form, their ufe is for fteening of walls; the concave or hollow bricks are like common bricks on one fide, but on the other they have a cavity, femi-cilindrical, about three quarters of an inch deep, and half an inch broad, fo that if two of thefe bricks are placed with their hollow together, they are like a pipe of an inch and a half bore; they are ufually a foot long, $4 \frac{1}{2}$ inches broad, and $2 \frac{1}{4}$ thick, they are generally laid in clay, and ferve inftead of leaden or wooden pipes to conduct water, as being much cheaper than any other materials.

Cogging bricks, are moftly ufed in Sufex, to make their work toothing or indented work under the copeing of walls built of great bricks: they are about ten inches long, 4 broad, and $2 \frac{1}{4}$ thick. Copeing bricks ate about 12 inches fquare, and 4 thick, flat underneath, and one third above is femi-circular, and the two ends flat.

Clinkers are nothing elfe than thofe common bricks that lie in the middle of the kiln or clamps, where they are fo much burnt, that they are as if they were glazed all over; thefe bricks are always dearer than the reft of the fame make, and are chiefly ufed in fout dations, and facing the walls, efp cially where any water comes near the wall, as being the moft durable.

Didoron were a fort of bricks ufed by the antients of a foot and a half long, and a foot broad, but nearly as thin as common tiles. Great bricks are 12 inches long, 6 broad, and three thick; they are generally ufed in Fence walls, made with pilatters or buttreffes, and in copeing. This manner of building walls faves great expences, and they will ftand as long as if they were every where of the fame thicknefs.

Paving bricks are made of various fizes and forms, from $6,8,10$, and 12 inches fquare, and an inch and a quarter more or lefs thick; thofe in the form of an hexagon look beft; they ought to be of good earth and thoroughly well burnt, otherwife they. will moulder away in a fhort time.

Place bricks differ not in form, but in the manner of making them, being of the common dimenfions, viz. 9 inches long, $4 \frac{1}{2}$ broad, and $2 \frac{1}{4}$ thick, as the fatute brick; they weigh nearly five pounds each, though fome will weigh $5 \frac{1}{3}$; this depends on the quality of the earth they are made of, and on their being well burnt : A cubic yard contains about 460 bricks nearly; which at five pounds, makes two tons and 300 weight per cubic yard.

There are two ways of burning bricks, in kilns and in clamps; a kiln is a large hole in the form of a reverfed fruftum of a cone, that is with the leffer bafe below, built with brick, and a fufficient quantity of earth about it, to keep the heat in as long as is poffible; the bricks are not laid clofe together, but leaving fmall diftances between them, that the heat may pafs between; and the fire is made underneath, where an opening is left for that purpofe: This way of burning bricks is efteemed the beft, becaufe the figure of the kiln, and the wall about it, are fuch that all the bricks within are nearly burnt of the fame hardnefs; but where there is a great quantity required, it takes up much time to burn them, for which reafon they ufe clamps in this cafe; which is nothing elfe than
than a great fquare or oblong pile of bricks laid $f 0$ as to leave a fmall interval between them, for the heat to pafs to the external parts; about this pile earth and bricks, which are not fufficiently burnt, are laid to keep the heat in. About London, where they have plenty of cinders, they throw fome between each row, which helps to burn them much fooner, and with lefs fire than is otherwife required.

An ingenfous brickmaker told me, that he could burn bricks as well in clamps as in kilns, provided he did it with wood; , but the beft way of burning bricks for a fortrefs, is to ufe both kilns and clamps at the fame time, in order to have a fufficient ftock of well-burnt bricks for the facings and foundations of the walls and other buildings.

A bricklayer with his labourer will lay 1000 bricks with eafe in a day, when the wall is but brick and a half or two bricks thick, and therefore he may lay more in thick walls; and fince a cubic yard contains 460 bricks, he will lay above two cubic yards in a day ; and from hence it may be computed how many bricklayers are required to finifh a certain piece of work in any given time.

An ingenious man, uled much in brickwork, propofed a larger kind of bricks for walls to be built in water, or in a fortification; their fize were to be 18 inches long, 9 broad, and 4.5 thick, and he affirmed to have made fuch bricks in Scotland. But a London brickmaker objected againft them; that they could not be managed before they are burnt, as being too heavy, and it would be a difficult matter to burn them quite through : whether this objection is well grounded or not, I hall leave to thofe who are well verfed in this bufinefs.

It is certain, that if fuch bricks could be made, they would be very ufeful in great works, both upon dry ground and in water, for in the latter cafe, they would not require fo much terrafs to lay them in as
the fniall ones, which, being very dear, would fave great expences. The Greeks and Romans uffed bricks of 3 feet long and a foot broad, in their public buildings, but then they were very thin, that is, about an inch and a half thick, as may be feen in fome old buildings, fuch as the old cafte at Cantertury ; but at prefent brickmakers difapprove all other fizes but thofe they are ufed to, not caring to go out of their own soad.

An engineer told me, that he joined feveral bricks together with ftrong mortar to compofe as it were large ftones, with which he formed the angles of the fortrefs: this muft certainly make the walls ftronger than by laying the bricks fingly one after another in the ufual way.

It is my opinion, that bricks might be made of the fize of four common ones joined together, that is 18 inches long, 9 broad, and $2 \frac{1}{4}$ thick: For as they are no thicker than the ufual ones, they would require. very little more burning, and feveral of thefe being cemented together, might ferve inftead of ftone to ftrengthen the wall in thofe places where it is moftly. wanted; I propofe this only in fuch places where no ftone is to be had, becaufe it is very certain that, wherever that can be had, it is much better than bricks.

It has been objected, that bricks will not laft in falty water; but by confulting Mr. Bratte, the mafter bricklayer of the ordnance, a man of great practice, he told me, that if the bricks were well burnt, fuch as clinkers, and made of the fame clay without any mixture, they would laft as long in falt water as any fone whatfoever; as a proof of which he had built the wharfs at Woolwich and Cbatbam, and befides, in fome other places they were ufed, and without the leaft appearance of any decay, though a good many years ago.

A friend
\therefore A friend of mine told me, that he had feen piers of an harbour at Arles in the fouthern parts of France, entirely built of bricks, and of fuch an age, that the fea has quite left the harbour which is now upon dry land.

There is a kind of bricks called grey ftock, which make a very beautiful appearance in buildings, and are chiefly ufed in and about London, in all front walls, which are expofed to view: The Duke of Norfolk's houfe in St. Fames's fquare is built of a particular fort, the moft beautiful that ever were feen, but they are very dear ; thefe bricks are made in the country, and of a compofition which I could not learn, it being a kind of myftery known but by a few workmen. Mr . Bratte, our mafter bricklayer, fhewed me fome bricks of a pale whitih colour, the fineft fort I ever faw; they appeared to me, as if they were made of red clay mixed with chalk, are very hard and found like a hard ftone ; the infides of the pieces are very fmooth, without any cavities: If thefe bricks were better known, I think they would be preferred to any other fort that I have yet feen.

The beft way of making bricks, is to dig the earth before winter, and to let it be expofed to the weather during the winter, which mellows the earth very much, and faves a great deal of tabour in preparing it, and the bricks fhould be made in April, May, Fune, or fuly; for after that feafon the weather grows damp, and then they will not burn fo well; and it is pretended by able bricklayers, that bricks fhould be two years old before they are laid, in order to make good work, and no brickwork fhould be made after the month of Auguff; becaufe the mortar has not time to harden before the damp weather comes in; by which it peals off, and the works require new pointing the very next fummer, as I have been myfeif an eye-witnefs to fuch works.

As bricks are nothing elfe than artificial ftones to fupply the want of real ones, there is no doubt but their durablenefs depends on the goodnefs of the mate-
rials, well mixt, prepared, and well burnt; and therefore, an engineer that propofes to make good works, muft be very careful in his choice; but the beft way to prevent any impolition, is to have the bricks made near the place where the fortrefs is to be built, by fkilful workmen, where the engineer, or thofe under him, may obferve the workmen, fo as to perform their work in a proper manner; and the government will have them much cheaper than to buy them by contract, as is the cuftom.

S E C T. III.

Of L I M.E.

LIME. is made of all kind of ftones, that will calcine; that which is made of the hardeft fones is the beft, and the worft of all is that made of chalk; the way of knowing whether a fone is calcinous, is to take a fmall piece, the fize of a walnut, and burn it in a common fire, and after it is red hot, to let it cool; and then fling fome water on it, and if it fmoaks and diffolves, it is a fign that it calcines; but the eafieft way of knowing upon the fpot whether a ftone will calcine, is to carry a fmall viol of aqua fortis with you; by letting fall a few drops on the ftone, it will boil and diffolve a part of it, if the ftone will calcine; but if it lies upon the fone like oil, and does not ferment, you may be certain that it will not calcine.

I have tried a great many forts of fone, firf with aqua fortis, and then in the fire, and have found the experiment to anfwer: I was told that free-ftone, fuch as comes from Portland, would not calcine, but I found the contrary by both experiments; others pretend that flint and a kind of gritty pebble fone make the ftrongeft lime; but all the trials I could make would
would not calcine them; for which reafon, I am of opinion, that they make no lime, and thofe who pretend they do, have it only from hearfay, without any other proof.

It is my opinion, that all ftones that have any metallic particles in them, and thofe that will vitrify, will never calcine, at leaft, I always found it fo; but left I fhould be miftaken, I leave it to the chemifts, and thofe that have an opportunity of making more experiments than I , to decide it.

Different counties in England produce different kinds of lime-ftones; in Kent, where there are a great many chalk-pits, they make their lime of chalk, and the greateft part of the lime ufed in and about London comes from thence, chiefly becaufe of the conveniency to bring it by water, which makes it much cheaper than any other that is brought by land: But this fort is the very wort that can be made; it is true, it may ferve very well for whitewarhing, and other things in the infide of a building; but as moft buildings are upon leafes, people are not fo nice about the ftrength and goodnefs of the work; provided it lafts as long as they want it, it is fufficient.

I have been informed that about eight miles from Port/mouth, is a chalky rock, pretty hard, that makes very good lime, and has been much ufed in building the fortification of that place: although the Purbeck ftone which is not a great way of, and the fragments of Portland fone, make exceeding good lime: I fuppofe the former lime is ufed, not becaufe it is better, but cheaper than the other, which is a very bad reafon, fince all public works, which'are of great importance, ought to be made as flrong and durable as is poffible; for what is faved by cheapnefs of the materials, is loft by the fhort ftanding of the works.

The beft lime in any part of England, is that which is made of the marble, found near about Plymoutb, and is very much ufed in all the country thereabout; the

Romans and Italiaus made ufe of no other lime than that of marble, in all their great and public buildings, it being the very beft that can be made, and of confequence, makes the buildings more lafting than any other.

Moft builders in this country do not ftand fo much upon a good reputation, as to make moft money of their works; and few gentlemen enter into the knowledge of building; fo that the works are generally badly executed; provided the outfide of walls appears well, it is no matter how the reft is. What fpoils the method of making ftrong and good walls is, that moft boufes in and about Loxdon are built upon leafes, fo that if they but fland the number of years propofed, the propriecors are fatisfied, and give themfelves no further trouble; this caufes the workmen to make theit work in a flight and expeditious manner.

I am informed, that in moft parts of Scotland there are exceeding good lime ftones, and in great quantity, in fuch a manner as to ufe the fame ftone for lime as they build with; in fome parts they have alabafter, which makes as good lime as marble. In Ireland, ef pecially about Dublin, lime-ftones are likewife fo plenty as to build with, which makes the beft work; beeaufe the mostar unites better with the flone, than if the parts were difimilar.

An enginear emplayed in any part of the country, pught to examine ath the different fones to be had thereabouts, in order to find that which makes the beft line, and ought not to chufe any becaufe it is the cheapeft, which can fcarcely be excufed in private buildings, bue fuch as will make the beft work; and fince lime is the very foul of good manfonry, it cannot be too good; but if it fhould fo happen that all the lime in the country is very bad, he fhould get as much from other parts that is good as to ferve for the facings of the wall, for fourieen or fifteen inches deep; the reft may be done with the cheapeft fort.

Sect. 4. FORTIFICATION. Yo7
Lime is burnt in kilns much like thofe of bricks; and the ftones mult be broke into pieces the bignefs of a fift, and more efpecially fo when the ftone is very hard; but when they are foft, fuch as chalk, it requires not fo much precaution : Care muft be taken to burn it every where alike, and thoroughly; otherwife, thofe parts which are not well burnt, will not faken with the reft, and when the mortar is employed, will diffolve, and difunite the wall wherever there is any of them.

There is likewife lime made of all forts of fhells of fea fifh, which is efteemed to be exceeding good, becaufe it dries and hardens in a fhort time, for which reafon it is mixt with Dutch terrafs, and ufed in all aquatic works; and, as it is much cheaper than terrafs, it faves great expences.

It muft be obferved, that thofe flones taken out of quarries which are damp, make better lime than thofe found above ground and are dry ; it has likewife been found, that the dryeft part of rock, and which is expofed to the fun, will make a different lime from that made of the inner part, which is damp and not expofed to the fun: Therefore an able engineer fhould not only try the outward parts of a rock, or a quarry, but likewife thofe parts which are not expofed to the fun and weather; otherwife he may poffibly reject the beft part as ufelefs.

S E C T. IV.

Of SAND, TERRASS and POZOLAN.

ALтноиg there appears very little difference in fand, yet there is fome which being mixt with lime makes much better mortar than others: In common buildings, they always ufe that which is neareft at hand, and in London they beat the rubbịh

The beft fand for good mortar is that whofe grain is not too fmall, which is clear and free from earthy particles; for the fmall-grained fand has been found not fo good, as being too fine to form a folid body when mixt with lime.

The manner of knowing whether fand is free from earthy particles, is to take fome and rub it in your hands, and if it makes them dirty, it is a fure fign that it is not pure, but if it be gritty and leaves no dirt behind it is very good. If it hould happen that no good fand is to be found near the place where it is wanted, the beft way will be to wafh as much as is required to make ftrong mortar, for facing, and pointing arches, and other fuch like works; that is, you put a good quantity into a tub, and fill it with water, then ftir it well with a ftick, and let the water run off; pour clean water in again, ftir it and let it run out; this being continued till the water is pretty clear, your fand will be clean.

Sand found in rivers is eftemed the beft, becaufe it is of a pretty coarfe grain, and moftly free from mud; others will have it that fand out of the fea or falt water is likewife very good; but as for my part, I would not chufe to ufe it, where good work is to be made, becaufe falt, if I am not miftaken, is a bad ingredient for mortar; this will be explained hereafter.

It has been found by experience, that fand fhould be ufed frefh, and before it has been too much expofed to the air; for it is faid, that dry fand never makes good mortar, although mixt with a fufficient quantity of good lime; and therefore when a large quantity is
brought to the place where it is wanted, it fhould be covered fo as the fun may not fhine upon it.

Inftead of fand mixt with lime to make mortar, feveral other things are ufed, fuch as cinders, tiles, fcalings of iron out of forges; but thefe ingredients mult be well beat, fo as to make a fine powder of them. I made feveral experiments with thefe materials, and found when they were well mixt with lime they made excellent mortar; fome of which being put into joints of walls in the month of December, the weather being very damp, and others kept in a warm room, made up in fmall balls, that which was expofed to the air dried as foon, and grew as hard, as the other: Neither could I perceive any difference between the mortars made of thefe different ingredients, for they grew all equally hard nearly at the fame time, although fome pretend, that the fcalings of iron make the ftrongeft mortar.

I have been told by a gentleman, that he has feen mortar compofed of fcalings of iron, and common lime, to be ufed in cifterns, and that it grew fo hard that the water could never penetrate it; but it mult be obferved, that mortar of this kind is worked with very little water, in fuch a manner as to become like a ftrong clay.

There are feveral other kinds of powder ufed in mortar inftead of fand, efpecially for cifterns and aquatic works; there is a fort which is called pozolana, from the name of the place it comes from, which is in the kingdom of Naples; this powder is of a reddifh colour, and when mixt with lime grows prefently hard and remains fo although in water.

Another fort made of a foft rock ftone, found near Collen upon the lower part of the Rbine; it is burnt like lime, and afterwards reduced to powder by means of mills; from thence it is brought to Holland in great quantities, where it has acquired the name of Dutch terrafs; it is of a greyih colour when it is not mixt, which is very feldom the cafe; becaufe it is very dear,
and abfolutely neceffary in all aquatic works, and fo they make as much of it as they can.

We have forgot to mention before, that lime fhould be burnt with coals and never with wood; the reafon given for it is, the coals being ftrongly impregnated with fulphureous particles, which mixing with the lime makes it more glutinous; and it has been found that the mixture of the cinders and the fmall particles of lime, found in the lime kiln, being reduced to a powder and ufed inftead of fand, compofe a mortar as ftrong for aquatic works as Dutch terrafs. The reafon of this appears to be owing to the particles of lime being mixt with the cinders and unflakened; when they are mixt with lime they flaken and dry up the watery parts of the lime, and leave no more moifture in it-than what is fufficient to lay hold on the bricks or ftones, and compofe as it were one folid body.

I have been informed, that in fome parts of England, which is Dor \int etf/bire, if I am not miftaken, is found a foft ftone, much like that of Dutch terrafs, and that it might ferve full as well in aquatic works; if this be true, I am furprized that it is not better known, fince it would enable us to make thefe kind of works of our own materials, and much cheaper, than to buy them from the Dutch, who often mix it with other things, to get the more by it. As for my part, I do not doubt, that, if there was a proper enquiry made by fuch as have it in their power, they might not only find fuch fort of lime flone as that which the terrafs is made of, but likewife the fort which makes plafter of Paris.
N. B. There is at prefent fuch terrafs, made here, and fold for eighteen pence a bufhel, whereas the Dutch cofts two fhillings, and is not better.

SECT. V.

How to prepare and make MORTAR.

THE manner of making mortar is quite different in diffetent countries, and even in the fame country by'different builders; the common way in and about London, is, to lay the lime ftones upon a heap, and cover it with as much fand as is thought requifite for making the mortar; then they fling fome water on it, fo as the Hime may fiaken gradually and mix it at the fane time, which they continue till the lime is nakened; when this is done, they pafs it through a feteen the next day, in order to feparate it from the fmall ftones, which have not been fufficiently burnt to flaken fo foon; after this they mix it and beat it well; and ufe it immediately. without any further cerernony.

But our engineers ufe greater precautions; for they mix and bear it every 24 hours for a week together, and then let it lie for a week more, and when they ufe it, beat and mix it again; by this means it will make good mortar although the lime is but indifferent, provided; there is not too much fand put into it.

The proportion moft commonly ufed in the mixing of lime and fand is, to a bufhel of lime a bufhel and a half of fand; that is two of lime and three of fand; this however is no general rule, for fome lime is fatter or more glutinous than others, and therefore will bear a greater quantity of fand. The common mortar in and about London has more fand in it than according to the proportion above: for provided there is juft lime enough to keep the fand together, the workmen are fatisfied: and they make large joints, becaufe this kind of mortar being cheaper than bricks, they get fo much more by their work, than if they made the joints fmaller ; but if they are obliged to make good mortar, they make fmaller joints, becaule the mortar cofts them more than bricks.

The

The Frencb make their mortar in a quite different manner; for they dig a fquare hole in the ground, a foot or 18 inches deep, and large in proportion to the quantity of lime they intend to flaken; they floor the bottom with boards; then they throw in lime firft 6 or 8 inches deep, and pour in as much water as will juft cover the lime; which they ftir till the lime fones are diffolved; when this is done they make their mortar in a few days after: this is the common practice, but in works of confequence, they cover it with one third of fand and let it lie for a twelve-month. It is pretended that the ancients flakened their lime many years before they ufed it; and there are fome who fay that freh mortar is hetter than old: but in my opinion the nature of the lime fhould be confulted; for when lime is very ftrong, by letting it lie too long it will grow hard and unfit for ufe, as it happend at Metz, as Mr. Belidor fays, where they let it lie a twelve month, in which time it became as hard as fone: but when lime is bad, I take it, the longer it lies the better it becomes.

Two things are to be obferved, in order to make good mortar, which are, that no unflackened particles of lime remain, and not putting too much water in it when it is prepared: therefore if lime is kept till every part is nakened it will be fufficient. It muft likewife be obferved, that burnt lime fhould not be kept too long before it is flakened, becaufe it evaporates and the air makes it lofe its property; but when lime is once nakened and well covered with fand, as likewife under fhelter from the fun and rain, it will keep as long as you pleafe, provided it does not grow too hard.

The water that is ufed in the naking of lime, requires likewife to be confidered; for if it be dirty and full of mud, fuch as is gathered in the ftreets, as they do at London, it will Spoil the mortar; it is imagined that all kind of clear frefh water is good; but I believe the fofter the water is, the better : fome pretend, that falt water out of the fea may be ufed; but for my part I
think it mult diminifh the goodnefs of the mortar very much : For it is well known that falt gives way and becomes fluid in damp weather, and therefore in winter, the mortar which is impregnated with falt muft neceffarily become foft; whereby it lofes the property of binding bodies together in bad weather, when is fhould have moft.

Mortar that is to be ufed directly, which ought never to be done but in cafes of great neceffity, hould be flakened by covering it with fand on a platform, and the water thrown over it little by litule, fo as to diffolve it gradually, and then paffing is through the fcreen to free it from the fmall ftones not diffolved; this being done, it Thould be well beat and worked once a day for a week, and let it lie for another, and when it is ufed, to work is well again; and no water hould be ufed but the firft time: but when mortar can be made betimes, it may be made in the manner mentioned above, and let it lie for about fix months, which will be fufficient to diffolve all the parts of the lime that is burnt, and the reft which are not burnt will not affect the work; alchough thofe that are found may be thrown away.

The mortar made for ceilings is different from that we have been fpeaking of; it is made of ox or cows haip well mixt and tempered with lime and water, without any fand. The common method of making this mortar is, one buhhel of hair to fix bufhels of lime; the hairs ferve to keep the lime or mortar from cracking; and to bind and hold it faft together.

Mortar made of terrafs, pozolana, tile duft, or cinders, is mixt and prepared in the fame manner as common mortar; only thefe ingredients are mixt with lime inftead of fand in a due proportion, which is abour half and half. As this mortar is defigned for aquatic buildings, the reader may eafily imagine that the lime ufed in it ought to be the very beft that can be had: for which reafon, lime made of fhellsor of marble is what fhouid be had if polfible, but in fuch works which are where the work is expofed to the air.

In fortifications, docks, or piers of harbours, I would lay all the parts of the works under water with terrafs mortar, and the reft of the facings, both within and without, with cinder or tile dult mortar, for about two feet deep; for if this was done, the walls would not require to be pointed and repaired as they commonly do : cellars, and all kinds of arches or vaults, under and above ground fhould likewife be done with this mortar : and the cinders out of lime kilns mixt with the particles of lime ftone, is, in my opinion, ftill preferable, for the reafons given in fection III. As to cifterns, they require terrafs mortar as well as all the works which are conftantly under water.

The ftrength or goodnefs of mortar does not only depend on that of the materials of which it is made, but likewife on the manner of preparing it: for the workmen put generally much water in it to make is liquid, in order to fave labour in mixing it; if this be done, the mortar will never be good for any thing: but if little or no water is ufed after it is flakened, and well beat, and mixt till it becomes foft, and this be repeated feveral times till it becomes gatuinous, you may depend upon it, that the mortar is good.

A very able perfon, who has been employed a great while in the works of fortification, told me, that he wets his mortar very fparingly, but beats it well every day for a week, and then tets it lie for a week or a fortnight before he ufes it, and has it well beat over again : this method is undoubredly very good, and ought to be ufed in all the works of fortifications, fince they are a great charge to the nation, and therefore whoever has the direction of them ought in a maniter to be anfwerable for their goodnefs.

A contrary practice is followed by fome others, who have the direction of werks; for I have feen, after works have been done, the mortar crumble off like fand, and when examined, found the lime in lumps, and not half mixt with fand; what can be expected from fuch work, I leave the reader to judge. Others pique themfelves upon making the work look regular; and will have every courfe of bricks to be three inches high : and as the bricks are but two inches and a quarter thick, the joints mult be three quarters, from whence the goodnefs of the work may be judged: inftead of making the joints fo large, I would oblige the bricklayers to make them only a quarter of an inch thick, which is fufficient.

Another obfervation is to be made, which is, that in all walls that have a hope, the cqurfes of brick ought to be perpendicular to the llope, and not on the fame level as is cuftomary; and this for two reafons; firft, all ftones being cut fquare caufe leaft wafte, and are eafier to the workmen; and when bricks are ufed, the joints are equally thick throughout; whereas, when the courfes are on the fame level, they raife the bricks on the outfide, fo as to make the 乌ope, which makeg them wider there than within; and when the mortar is not very good, the walls require pointing yery often. Another inconvenience arifes, that the outlide of the courfe is perpendicular to the flope a brick length, and the reft lie horizontally, by which they make an angle or bending, fo that the bricks of the fame courfe can never bind cogether, and the outfide of the wall is no more than 2 fhell the depth of a brick, kparated from the reft of the work.

S E C T. VI.

Of PLASTER.

PLASTER is different from common lime, in that it compofes a folid body by itfelf, without mixing either fand or any other ingredient, as is done in lime.

It is made of a bluih foft ftone, taken out of quarries, which generally are at the fide of a hill, much like the ftone of which Dutch terrafs is made. This ftone is burnt in the fame manner as lime, and when cold, beat into a fine powder, or duft; and when it is to be ufed, about a bufhel is put into a tub and water poured in, till it becomes liquid; then it is well flirred with a ftick, and ufed immediately; for in lefs than a quarter of an hour it becomes hard, and good for nothing; another of its properties is, that it will not beat mixing a fecond time, as lime will do.

Although plafter is to be found in moft couritries, yet nobody I know, has given a method to diftingurh it from lime fone: I am apt to think, that it may poffibly be the fame fort of fone as that found near Collen, of which the Dutch terrafs is made; and if it is not the fame fort; it comes very near to it; for it dries very quick, and makes a very hard body : it is faid not to remain hard in water, but I never heard that it was tried with mixing it with lime; for which reafon, I will not affirm it to be the fame as terrafs.

That which is found in a hill near Paris, is efteemed the fineft, and brought to England chietly to make bufto's, and to take off medals, as well as all kind of ftatuary works; but there it is ufed in flooring, and to line the infide of ftone walls, inftead of common mortar. But the plafter found in this country, being of a coarfer fort, is chiefly ufed to make floors for gentlemens houfes, and for granaries to keep corn in.

Sect. 6. FORTIFICATION: 117
The only way to know the ftone, is to burn it in a fire, and reduce it to a fine powder; then if it grows hard immediately after it has been mixt with water, you are certain that it is plafter; although the ftone is of a blue greyifh colour at firtt, yet it becomes very white by burning, and when mixed with water, it does not ferment or grow hot like lime.

Having thus given the quality and manner of preparing the chief materials ufed in works of a fortification, in the preceding fections, as far as we poffibly could from our own obfervations, and what we could' gather from other authors; to which, if the young engineer will join his own obfervations with thofe of his fuperiors, under whom he is employed, efpecially to thofe of able workmen, I do not queftion, but he will be able, not only to judge whether works are well executed, either in the whole or in parts, but likewife know how to proceed whenever he fhall be employed as the chief director over fuch works, for which reafon, we fhall proceed to what remains to be faid of this fubject.

$\begin{array}{lllll}P & A & R & T & \text { III. }\end{array}$

Containing the mannet of tracing a Fortrefs on the Ground, to make an Eftimäte, and to execute the Works.

SECTI.

Sherroing the Úsefulness and Necessity of buiding FORTRESSES.

THE neceflity of building fortreffes in all ftates whatfoever, appears from this intiate ptinciple of felf preftitation; for a powetFul nation has always powerful enerries; fo that by the lofs of a battle, the whole country is in danger, if the remainder of the routed army has no place of fafety to retire into, where they may rally and receive fuccours, either from their allies, or new-raifed troops from that part of the country, which the enemy is not yet mafter of.

It has often happened, that after an army has been defeated, it has received fuch fuccours in a place of fafety, as not only to have been able to fuccour their own country, but likewife drive the victorious army out of the field with lofs. There are many fuch examples to be found, both in antient and modern hiftories: Whereas, if an enemy gets once the victory in a country that has no forreffes, he is at that inftant mafter of the whole ftate.

An example of this kind has happened here in England; for had there been fome good fortified places, when William the conqueror entered the country, it

Sect. i: FORTIFICATION.
would not have been loft by gaining of one battle; and had the town of Genoa been fortified in the laft war, the Auftrians could not have taken it at once, and been mafters of the whole ftate, as they did; in fhort, were it not for the many fortified places in Flanders the Aufrian dominions in that country would have been long ago loft.

In fmall fates and republics, they are no lefs neceffary than in great kingdoms, in order to refift a powerful enemy, till fuch time that their allies can come to their affiftance. To this it may be objected, that fortified places in a free ftate, may be a means to enlave it by fome ambitious and powerful man, affifted by a neighbouring prince; but as no fuch examples are recorded in hiftory, as far as I know, and the contrafy is evident; by the ftates of Holland, who have many fortified places, and yet have preferved their liberty, fince their firft feparation from the Spaniards, it is evident, that this objection has no foundation.

Maritime powers, and thofe who inhabit iflands, fuch as England, Sardinia, Sicily, $\forall^{\circ} c$. require no lefs fortified places; for as an enemy may invade them by a furprize, and though his naval force be lefs, yet, when he once gets a footing, he may either conquer or deftroy the couptry. Befides, their trade, on which inanders chiefly depend, would become very precarious, without having fome frong place or other to fecure their effects in, which otherwife might be furprized and carried off, before an army can arrive to defend them. Many other arguments might be alledged to prove the ufefulnefs of fortified places, were it not that all the world is convinced of it at prefent, and therefore it would be needlefs to fay any more about it.

S E C T. II.

Of their SITUATIONS.

THE fituation of a fortrefs depends chiefly on the reafon for which they are built; for if they are to promote or protect trade, they mult be placed near the fea, lakes, navigable rivers, or channels; if they are defigned to guard a pafs or inlet into a country, they are placed on hills or high ground, that from thence they may infilade and defend that pafs, and fo as not to be commanded by any other adjacent hill; or near the paffage of a large river; and if they are to fecure a country from an invafion, they muft be fituated in fuch a manner, that the enemy mutt attack them before he can advance any farther; and in cafe he fhould pals by and leave them behind, they may cut off his communication with his own country, whereby his conyoys may become precarious and difficult; and therefore mult either advance farther or elfe befiege them.

In inlands, the beft fituations are upon the coafts, and in fuch places, where an enemy may eafily land, and where the garrifon has a fafe conmmunication with fome inland town, to receive fuccours and fubfiflance in cafe of an attack; or if there are any great rivers, that run into the fea, and where fhips may come up into the country, there fhould always be one or more fortreffes built near them, in fuch places, as may prevent the hips fiom paffing by, without fuffering greatly from the cannon placed there, and where the approach is very dangerous.

In an inand of no very great extent, whofe coaft is of an ealy accefs, in moft parts, and where it is impofible to fortify every one; the beft fituation for a forteffs is the middle of the inland upon a rifing ground; becaufe
becaufe troops may beft be fent from thence to any part, to oppofe the landing of an enemy ; but this for-: trefs fhould be pretty large, that, in time of need, the inhabitants of the country may retire into it with their: cattle, and other moft valuable effects, and help to de-' fend the place, till the enemy is obliged to retire, either for want of provifion, or having no hopes to get mafters of the place.

But if the inland is conliderable, it is not fufficient: to build fortreffes near the moft convenient landing places, but there fhould likewife fome be built in the paffes, to prevent an enemy from entering farther into the country, in cafe he fhould land, notwithftanding the forts on the coaft ; or at leaft to fop and protract time, fo as the country may rife and come to oppofe him.

In fmall ftates, that lie in an open country, which: cannot afford the expences of building many fortrefles, and are not able to provide them when built with fufficient garrifons and other neceffaries for their defence, or thofe whofe chief dependance confifts in the protection of their allies; the beft way is to fortify their capital, which, being made fpacious, may ferve as a retreat to the inhabitants in time of danger, with their wealth and cattle, till the fuccours of their allies arrive.

If a fortrefs is built near a river, lake, or fea, it muft be confidered whether it fhould ftand quite clofe to the water fide, or at fome diftance, fo as the works may not be battered by the fhips; whether an enemy may eafily land thereabouts, and attack it by land; whether the Thips may come clofe, or the water is Shallow; when the water is fo deep that fhips can come up clofe to the walls, the parapets muft be made high, and thofe that can be feen from the main top, fhould be covered above with canvafe, planks, or with any thing elfe in time of fiege, to cover the troops behind them.

When

When a fort lies fo near the watef, that it may be battered from the fhips, it is in danger of being foon deftroyed by the fuperiority of their fire; on the contrary, when the water is fo fhallow, that the flaips cannot come near enough to batter in breach; care mult be taken that the enemy may not land in their boats, and form it by land; to obltruct which, redoubts or batteries muft be buiit, to refift both in front and in flank; and if they cah land any where beyond the reach of cannon, thefe redoubts or batteries mult be fortified all round with a wall and good ditch, that they may not be fuprized in the rear; as we did at Cape Breton, where the large battery fronting the entrance of the harbour, was furprized, and the guns turned againft the town, by which it was obliged to furrender; this would not have happened, if the precaution mentioned above had been ufed.

In a place where there is a harbour, fome parts or other of the fortrefs thould command it, if poffible; for though redoubts and batteries are made to defend its enterance, yet if the enemy finds means to deftroy fome, and paffes by others, the harbour lies open for the fhips to come in, without any farcher obftacle : and as thefe defences are at fome diftance from the fortrefs, they are always taken either by fratagem or main force; as being feparate from the garrifon, and are not eafily relieved. But if part of the fortrefs commands the harbour, the flips are never fecure in it till the place is taken, which is all that can be expected.

It is true, that the entrance thould not be neglected; for wherever there is a point of land that commands the approach of an enemy, it fhould be carefully fecured by fome work or other; and as it often happens that fmall rocky inands lie in the entrance, which, when properly forified; are very advantageous in the defence of it: Nothing conduces fo much to the fafety of a place, fituated near the fea, or navigable river,
as thofe works which keep the enemy's feet at a diftance; fince thereby their main frength is of no ufe to thert 3 and though they fhould make a defcent in fome part or other with a few fmall pieces, yet thefe may be eafily repulfed by the garrifon. As thefe kinds of fituations are the moft ufeful to a trading nation, we have fo much the longer dwelt upon the method of fecuring them in the beft manner poffible.

When an old fortrefs is to be rebuilt, the engineer ought not to rely too much on the capacity of him who had thade it firts; he thould confider whether there is no other fituation thereabouts, that might be better than the former; whether the old works were properly adapted to the nature of the ground; how much expence will be faved by building upon the old foundations; whether it is too big or too little; whether by following pattly the old plan, and building the reft in a different mannet, it would not be better than to follow it in all its parts: or whether by chufing another fituation, it would not be too expenfive in refpect to the advantage gained thereby; in fhort, he fhould leifurely, and well confider every thinute circumftance, in order to form a true idea of the fituation, the figure of the works, and the confequences refulting therefrom, before he determines his choice.

An engineer, who is truly confcious of the truft repofed in him, ought to be extremely cautious in all his undertakings, and well confider, that he is, or ought to be, anfwerable for all extraordinary and ufelefs expences, which he caufes to the nation, either for want of \{kill, or inapplication; and if a nation was rightly fenifible of the truft they put upon them, Iam perfuaded that they fhould be very careful, and well examine thofe who are defirous to enter into fuch employments, before they admit them.

An engineer requires much greater fkill in arts and fciences, than is generally imagined; for it is not fufficient to know how to draw plans, profiles, and landfkips,
fkips; to underftand a few propofitions in geometry, or to know how to build a wall or a houfe; on the contrary, he ought to be well grounded in all the moft ufeful branches of the mathematics, and how to apply them to practice, natural philofophy, and architecture; have a good notion of all kind of handicraft works; and above all things, to be well verfed in mechanics.

As the variety of nature is infinite, fo it is impoffible. to defrribe all the different fituations, where fortreffes Thould be built; it requires the greateft fkill: and knowledge to fix upon fuch as may anfwer beft all the different expectations; and as the building and maintaining them is atterded with very great expences, when they do not anfwer the intent for which they are built, they are heavy burthens to a nation, without any confiderable advantage: for which reafon an engineer ought ferioufly to confider what he is to do before he begins fuch an undertaking: It is my humble opinion, that the choice of the fituation, and the making a fcheme of a fortrefs fhould not be intrufted to any fingle perfon; on the contrary, the expence of fending five or fix upon the fpot, and in concert making a proper choice of the place and works, would be more than faved in the execution.

S E C T. III:

Observations relating to the Situations of PLACES.

IN the former fection we have treated of fituations in general, it remains now to obferve the particulars which are neceffarily to be known, before the fcheme or project of a fortrefs is fixed upon. The firft thing to be confidered, is to know whether the air is wholefome; for it would not be for the intereft of a ftate, to build a place of that kind without the inhabitants being in a way of increafing, in order that there may

Seet. 3. FORTIFICATION.
be no occafion of fending often a fupply of people; befides, a garrifon in fuch a place, would continually weaken to fuch a degree, as would make the taking it very eafy.

This may be known by the colour and ftrength of thofe wholive there, or near the place; and if it is not inhabited, it may eafily be known by the fituation; becaufe if it be furrounded by low and marhy ground, the place is certainly unwholeforme; on the contrary, if the place is a dry foil, and produces plenty of wood and grafs, and there are a great number of birds, or wild animals, it is no lefs certain, that the fituation is wholefome and fruitful.

The next thing to be confidered, is to know whether there is a plenty of frefh and wholefome water, fufficient for men and beafts, for without that, no place ought to be fortified, unlefs it may be fupplied by fome fpring not far off, and which an enemy cannot cut off in time of a firge; otherwife, it would be impoffible to defend it for any time. It may be obferved, that all fweet waters are not equally wholefome; for it has been found by experience, that very clear and well-tafted water, has occafioned parricular diftempers to thofe that drank it conftantly. Befides, as fome waters will cure diftempers, why fhould there be none of contrary qualities? The air of fome places is efteemed unwholefome, when it is rather the water that occafions the diftempers. It has been pretended, that the lighteft waters are the beft to drink: but Mr. Cotes, in his Hydroftatic lectures, has compared the weights of all the different waters that he could get, even fome of the river Ganges, which is efteemed the beft in the world, but could not find any fenfible difference in their fpecific gravity; if this be the cafe, its gcodnefs cannot depend on its lightnefs, but rather, on fome quality imbibed from the foil, through which. it runs, which cannot be diftinguifhed by the tafte: Others fay, with fome. juftice, that if water be boiled
a good while, and let ftand for a time, till it is quite cold, and when no fettlement is found at the bottom of the veffel, it will be wholefome; this may be better known, by ufing the fame veffel for fome time, and then obferving whether any fediments are found; for there may be fo little at firft, as not to be perceived, yet in length of time may gather fo much as to make ic appear quite plain.

I have been told by a gentleman of veracity, that very clear and well-tafted water, fpringing out of a. rock in Ireland, petrifies every thing on which it falls, in a very fhort time: Therefore water of that quality can never be wholefome, either for man or cattle.

Water feems to receive its chief quality from the nature of the foil, through which it runs, as we have obferved before; as for inftance, when it comes out of a rock, or of a gravelly foil, it is clear and cold; that which comes out of chalk, is foft and milky ; and that of a marihy foil, brackin; this latter fort is the worf of all.

If the inhabitants, or thofe who live near the place, are fubject to any particular diftempers, more than thofe in others, either the water or the air is unwholefome; it may eafily be known, whether the air is good or bad; for if there is any ftagnated marhhy water adjacent to the place, the beat of the fun draws up the corrupted particles, which fall in the cool of the night, and infect the air; but if there be no fuch places near about, the air will be good. It is faid, that in bad air, the livers of birds and animals are full of fpots; but wheth r this is fo or not, I cannot fay.

Next to the water, fuel tomake fire is to be confidered; it muft therefore be enquired, whether there is wood, coals, or turf to be had near at hand, or may be brought to the place at an eafy rate, either by land or water: this article is very neceffary, efpecially in northern climates; befides its ufe in preparing victuals, wood ferves for moft forts of handicraft works; in fhort,

Sect. 3. FORTIFICATION. 127
every thing that is neceffary for the fubfiftence and conveniency of a garrifon mult be confidered, before the conftruction of a fortrefs is undertaken, becaufe the expences which attended fuch works, are always very great; and confequently, every individual circumftance ought to be examined and carefully confidered beforehand.

In the next place, it muft be obferved, whether there are materials to be found for the building of the place, either upon the fpot, or near at hand, fo as to be tranfported at an eafy rate; fuch as timber, fone, or brick, lime and fand, or whether chey nay be partly had on the fpot, and partly brought by water; for if. the greateft part is to be tranfported by land from fome diftance, the expence will be fo excelfive, that the utmoft importance of the place only can excufe the building it.

If it be a place near che fea, or a navigable river, where a harbour is to be made, it muft be carefully confidered, on which fide the fortrefs is to be placed, both in refpect to the landing of the goods, and to the defence of the harbour, as likewife, where the hhips may come as clofe to the quay as polible.

In a fortrefs built to promore and protect trade, it muft dikewife be confidered, what kind of goods are to be found in or near the place, what might be brought by lhips from foreign parts, and what might be exported, in exchange for thofe manufactured there, and where to be carried to narket.

It may happen, that in fome places, fuch as illands and fome ouher places, wheve there are wery few things to be had for exportation, yer if the barbour is convenient for thips to come in, when diftreffed by weather, or the place may ferve as a magazine to bring and depofite Earrapran commodities, to be from thence tranfported by veffels, to fome other market; or etfe, fref water is to be found for hips, when no other
place
place is near at hand, as is St. Helena ; fuch fituations may be fortified, and become very ufeful.

There are many fituations in inland countries, which we have not taken notice of here, and yet nay be advantageous for building large fortified places, becaufe their ufefulnefs depends on too many circumftances to be enumerated; therefore we fhall obferve in general, never to build a large fortification, excepting near navigable rivers, which may ferve for conveniency of trade, and to be a ftrong barrier to a ftate; or to ftop a pafs, through which an enemy might enter into the country; for where there is no river, he may pafs by and leave the place behind him; hills that command any of the works, or hollow roads, through which an enemy may approach, fhould be avoided; and in general, the ground fhould be level and free from trees, or any other thing, which may favour an approach under cover, for a mile all round.

S E C T. IV.

How to make the Plan of a FORTRESS.

WHEN a fate has refolved to build a fortrefs, an engineer is to furvey the fpot of ground, upon which it is to be, very exactly, and to draw the plan of it very diftinetly, on a large fcale, which muft extend at leaft as far as cannon fhot beyond any of the cutworks, together with feveral fections or profiles, fo as to exprefs the heights of the moft material inequalities of the ground; if there be any river or ftanding waters near it, their breadth and length muft not only be taken and expreffed in the plan, but likewife all the foundings, in order to know whether any fhips or fmall craft can come there.

If there be any hills or high grounds, or hollow roads near hand, they muft be carefully expreffed, borh
both in the plan and fections; after which the engineer muft compofe a memorial, containing an exact and diftinct account of the nature and fituation of the ground; if rocky, hilly, marlhy, or even; if there is a river, whether it is navigable or not; or if there be a lake, whether it may be ufeful for navigation, or to ftrengthen the works s if there is a good foundation to build upon; whether there are fprings or river water to be had for the ufe of the garrifon; and wood, coals, or turf, for fuel.

If the materials of which it is to be built, are to be had upon the fpot, or, if at any diftance, how they are to be brought by land or water; the nature and quality of the materials; their prices, and that of the workmanihip; and above all, whether the works are to be built with ftone or bricks, where to be had, whether any quarries are near hand, or proper clay to make bricks, and fuel for burning them; where to get the lime and fand, whether the materials are good, or but indifferent; in fhort, it muft contain every thing required for the building of the place, and for its maintenance.

This memorial, together with the plan and profils of the fituation, being laid before the council, which has the direction of fuch works; who ought to fend three or more of the moft able engineers to the place, in order to examine every particular, and to obferve, whether the plan and memorial are both conformable to the fituation; if not in all particulars, to correct them ; and when they are fufficiently acquainted with every thing, to make a plan of the fortefs, in conjunction, conformable to their inftructions, and the confequence of the place.

For it is my humble opinion, that fuch an undertaking fhould never be trufted to the judgment of one fingle perfon, ever fo well qualified, as it is too often the cuftom; and when they all agree in their opinions, a fair plan is to be made on a fcale of 30 fathoms to an
$i_{\text {nch }}$ at leaft, with proper profils, in order to lay them before the council, with a new memorial, expreffing their reafons for making fuch works preferable to any other, with references to the plan, and why the fortrefs is made of that extent.

But in cafe the engineers fhould not agree in all the particulars; feparate plans muft be made by each, and the reafons given in writing, in order to be decided by the council, which of them is to be made ufe of; all this fhould be done with the utmoft candour, and without any views of intereft, or preference in refpect to capacity, or any thing elfe whatfoever, contrary to the true intereft of the nation.
In making the plan of a fortrefs, particular regard muft be had to the three following confiderations:

1. The expence neceffary for the building of it. For as it is generally very great in fuch undertakings; by increafing it without neceffity, or the importance of the place requiring, it inftead of being an advantage, it becomes a burthen to the nation.
2. The number of troops required to guard and defend it, togetber with the quantity of artillery and ammunition for a fiege. For if this expence fhould be equal to, or exceed the revenue or advantage arifing from it; it is plain, that, inftead of being an advantage, it would be a difadvantage.
3. The extent or capacity of the place, with refpert to the fpace taken up by the woorks of fortification. For if it fhould happen, as we are not without examples, that the town could not contain a fufficient number of troops to defend it, befides the inhabitants, it is evident, that it may be taken with lefs expence than another of fewer works, provided with the fame number of troops; as each work would be capable to make a proper defence; and confequently, a great expence would be thrown away on fuperfluous works to no manner of purpofe.

There are many other confiderations to be had; as that the works fhould flank or defend each other in the moft direct manner poffible: that the communication from the body to the outworks, may be eafy and fecure, as well as thofe from one work to another: that the works are properly adapted to the nature of the fituation; if the ground is low, tenaillous, lunets, or fecond ditch and covert way ought to be made; if level, ravelinis and covert way only; if there are any hollow roads leading to it, fome works that flank it in a direct manner; if there are any hills or rifing grounds that command fome of the works, little forts or redoubts fhould be made there, with a fecure communication to the fortrefs; or elfe traverfes are to be made in the works themfelves, efpecially, if they are feen in the rear: If the place is large and of great confequence, horn or crown works are ufeful to fecure the gateways, or a fpot of ground which might be advantageous to an ehemy: In fhort, engineers fhould be fparing in their works, to make no more than what are barely neceffary, and whereby vifible advantages are gained, both on account of faving expences in the building, and in the maintenance of a garrifon to defend it, and in every thing elfe neceffary for its defence.

When an old place is to be fortified, that has fome work \bar{s} ftanding, the director ought to endeavour to find the reafons which engaged the builder to make thefe works; which being known, he muft confider whether they anfwer the intent, and if not, how to change, either partly or the whole, fo as to anfwer better, to make ufe of part of the old works, if not the whole; and never demolifh old works to build mew ones, without abfolute neceffity, in order to diminifh the expences, I have feen projects for demolifhing old works and to build new ones in their ftead, which werenot fo good by much. This will always happen, when an engineer is entrufted with works, that does not underfand his bufinefs; and thofe very people, are generally the moft
ambitious to fhew their own performances, whether right or wrong.
Situations which are partly fortified by nature, fuch as when there are any precipices, rocks; or which are partly furrounded with water, are very convenient; for the other part may be fortified at an eafy rate, befides the place requires but a fmall garrifon to defend it. When the fituation is rocky, care muft be taken to make ufe of the rock for the facings of the works, as much as will agree with the plan, which will fave expences; blowing up the higheft parts to raife the lower ones ; but it muft be taken notice, that each work is to be of the fame level, or nearly fo, every • where, and that the inner ones rife gradually above thofe before them.

When the plan of a fortrefs is fixed upon, the profils muft be determined, and it muft be confidered, whether the works are to be wholly faced with walls or partly, how much the height of the body is to exceed that of the out-works. Engineers vaty very much in their opinions, in refpect to the heights of the works; Mr. Vauban made the body of the place 6 or 8 feet higher than the ravelins, and thefe higher by 6 feet than the glacis: Mr. Coeborn did the fame nearly, but made his capital ditch narrow and deep, whereas the former made it wide and fhallow; the latter covers the wall of the body very much, fo that it cannot be battered for above three feet below the horizon, brings the works clofer to each other, and makes their defence fhorter; the broad ditch, on the contrary, difcovers the wall to the very foundation; but when the ditch is dry, works may be raifed in it fo as to make a good defence; the paffage through it to the breach may be obftructed and difputed for a long while. As for my part, I think a middling width is preferable to a large one; that is, I would never make the capital ditch above 16 fathoms at the falient angle of the baftion, when the exterior fide of the polygon is 180 fathoms,

Set. 4. FORTIFICATION. I33

 thoms, and fo in proportion to the length of the fides.The reafons given for making high ramparts, are, that they cover the houfes and other buildings better than low ones, and that the enemy may be fired at from all the works in the fame front, without incommoding thofe in the outworks. To this it is objected, that when the works rife gradually one above the other, the enemy may ruin the defences all at once, from the firft batteries he makes, and then may advance without having any thing elfe to fear than the fire of fmall arms; befides the rampart of the place becomes very high, and, of confequence, increafes the expences confiderably.

On the contrary, if the works were made nearly all of the fame height, the guns placed in the inner works cannot be difmounted till the outer works are taken, excepting by fhells; but the chance of difmaunting them is fo very little, that it may be looked upon as inconfiderable.

Another material advantage arifing from this method is, that the height of the body of the place is much lefs than the former, and therefore the expence of building it confiderably diminihed: As to not being able to fire at the enemy from all the works at once, it is of no confequence; becaufe the outward works will hold as many guns as are required to keep the enemy at a diftance, and, as he approaches, thefe guns may be brought into fome others, when it is not fafe to keep them longer there.

For my part, I would make the heights of the works fo as to terminate in a right line drawn from the parapet of the body to the extremity of the glacis, becaufe by this means great expences would be faved; the enemy muft batter the works one after another, and therefore raife as many batteries as there are works; befides you may at any time fire en barbet from any of the works you pleafe, or is found moft convenient.

Mr. Vauban ufed to raife his revetements as high as the parapets, excepting at New Brifac, where they are not above 3 or 4 feet above the level of the fields: and to build very ftrong counterforts behind them; where-: as Mr. Coehorn, who was more faving, made them, only even with the level of Bergen-op-zoom.

This method is very good, becaufe it faves great ex, pences in the building, and when the place is befieged, the enemy can batter but a very little part of the wall; it requires more time to make a breach, and lefs expences to be repaired; whereas when the wall reaches quite up to the top, by battering it as low as can be, the upper part tumbling down all at once, makes a breach in anort time; and the expence of repairing them is very great.
Some will have the walls to begin from the bottom of the ditch, without making very deep foundations. It is certain, that the burying fo much mafonry under. ground is of no other advantage than to fupport the walls above them: And when a foundation can be made firm with piles or other ways, it would fave great expences. This may be done in wet ditches, becaufe the wood being always under water will never perifh; but it is not fo in dry ones, unlefs the bottom is very good, the piling cannot be depended on; befides the founda-tions in the faces, where the breaches are made, fhould be as deep as can be, becaule the enemy's miners will otherwife carry galleries under the wall and blow it up, in lefs time than the breach can be made by cannon: But in the gorges or counterfcarps where no breach can be made, nor any danger apprehended for making mines, it would be extravagant to lay the foundations any deeper than is juft neceffary to fupport the walls above them.

SECT:

S ECT. V.

To make the eftimate of a FORTRESS.

WHEN the plan of a fortrefs is drawn with proper profils and elevations, and every thing expreffed on paper that can be done, or is neceffary; all the angles and lines not given by the conftruction, muft be found by trigonometry, according to the manner of the fpecimen given in our Elements of matbematics, page ${ }^{159}$: The quantity of mafonry muft be computed in the manner taught, in page $2 \operatorname{con}^{200}$, as well as the excavation and tranfportation of the èarth, and the expences of making the ramparts, parapets and glacis: then if the prices of the feveral materials are known in the country where the fortrefs is to be built; it will be eafy to make a proper eftimate of the expences that a flate will be at, in order to have the work executed.

As it is impofible to determine the prices of the materials, which change in every place, according as they are near or upon the fpot, and as the labour is dear or cheap; we fhall content ourfelves here, to give only the quantity of work of all the material parts; which together with the experience an engineer muft have before he is employed in fo great an undertaking, and the knowledge of the form ufed in the country, to reprefent it to the directors of thefe kind of works in a proper manner, will be fufficient for our reader to underftand what is necefflary upon fuch an occafion.

To compute the Quantity of MASONRY,

Plate VI. Fig. i. We fhall fuppofe, that the fortrefs is a regular pentagon, with ravelins, covertway K_{4} and
and glacis; that the exterior fide A B is 180 fathoms, the faces $\mathrm{AH}, \mathrm{BE}_{2}$ to be 50 ; the perpendicular CD , 30 , according to Mr. Vauban's firtt method, ${ }_{60}$. Now becaufe we have found in our Elements, page ${ }^{2+1}$, the flanks to be 27.27 fathoms, and as there are 10 ; the fum of their lenghts will be 272.7 fathoms, or becaufe, we fhall exprefs all the contents by cubic yards, which is the ufual method here in England, and each fathom is two yards, the fum of the lengths of all the flanks will be 545.4 yards We have likewife found in the fame page, that the length of the curtain F G, is $\$ 6.39$ fathoms; and as there are five, the fum of their lengths will be 38 I .95 fathoms, of 763.9 yards: And fince the faces A H or B E, are 50 fathoms by confruction, the fum of 10 faces will be 500 fathoms, or 1000 yards.
It may be obferved, that it is the fame thing to multiply each length by the number of fquare yards contained in the profil, or to multiply the fum of all the lengths, by the fquare yards contained in the 'profil; whence by adding the fums of the lengths of the faces 1000, the flanks 545.4, and that of the curtains, 763.9 , we fhall have 2309.3 yards, for the fum or total of all the lengths of the body of the place.

Fig. 2. Now if the height of the profil ABCD, be 30 feet, or 10 yards, from the foundation AD to the cordon BC; the reft of the parapet is fuppofed to be of earth only; then if the wall is of ftone, according to our tables, the thicknefs BC above will be 5 feet, and that A D near the foundation it. In order to find the area A BCD, we muft add the two paralled fides AD and BC, which gives 16 feet, and multiply half the fum 8 by the height A B, 30 , which gives 240 fquare feet; and fince 9 fquare feet make a qquare yard, if we divide 2.40 by 9 , we fhall get $26 \frac{2}{3}$ fquare yards for the content of the profil; exclufive of the foundation A DIH, and the counterforts; therefore
if we multiply the total length 2309.3 , found above by $26 \frac{2}{3}$, we fhall get 6158 I .3 cubic yards for the content of mafonry contained in the body of the place, exclufive.of the foundation and the counterforts.

If we fuppofe the foundation A H to be 6 feet deep, and 12 broad, as they are rectangular we need but multiply the bafe, 12 by the height 6 , which gives 72 fquare feet or 8 fquare yards for the area of the foundation : and therefore this content multiplied by the total length 2309.3, gives 18474.4 cubic yards for the foundation, In order to find the content of the counterforts, we muft confider that their whole heighth H B is 36 feet; the length of the bafe H K, 8.6 feet according to our tables : and if the diftances from the center of the one to that of the next be 16 feet, their breadth will be 4 feet by what has been faid in the firft fection : whence multiplying 8.6 by 4 , we get 34.4 feet for the area of the bafe or $3.8 \frac{2}{9}$ fquare yards; and this multiplied by the number of yards, 12, contained in the height gives $45.8 \frac{2}{3}$ for the content of one of the counterforts : The number of counterforts is found by dividing the total length of works, by the diftance between the center of one counterfort to that of the next : and fince the total length has been found to be 2309.3 yards, and the difance $5 \frac{1}{3}$; we fhall have 433 , for the number of counterforts; and as the content of all the counterforts is equal to the product of the content of one multiplied by their number; it follows that 433 multipled by 45.84, gives 19860.2 yards for the fum or total content of all the counterforts. Whence we get for the quantity of mafonry of the body of the place

The content of the $\{$	wall foundation counterforts	$\begin{aligned} & 6158 \text { r.3. } \\ & 18474.4 . \\ & 19860.2 . \end{aligned}$
	Total conten	99915.9.

Having found the quantity of mafonry contained in the body of the place, the next thing is, to find that contained in the faces of the ravelins, which we fhall fuppofe 24 feet high, and whofe profil is reprefented by the third figure, the thicknefs above BC near the cordon is 4 feet 4 inches, and near the foundation 9 feet II inches, the fum of the two parallel fides will be 14 feet, 3 inches, half of which multiplied by the height 24, A B, gives 171 feet, or 19 yards exactly, for the content of the area ABCD of the profil, exclufive of the counterforts and foundation.

Now becaufe the faces of the ravelins, are 51.75 fathoms, according to our Elements, page 215 ; and ten of them will be 517.5 fathoms, or 1035 yards; this length being multiplied by the area 19 of the profil, gives 19665 cubic yards for the content of mafonry of the five ravelins, exclufive of the foundation and counterforts.

Suppofe the foundation to be fix feet deep, and it broad, then the product of 11 multiplied by 6 , gives 66 feet for the fection of the foundation, or $7 \frac{1}{3}$ fquare yards; now if this content be multiplied by the total length 1035, we fhall have 7590 cubic yards, for the content of the foundation.

The length $\mathrm{L} A$ of the counterforts is 7 feet, and the height H B 30 , including the foundation; therefore the area of the counterfort K B, will be 210 feet, or $23 \frac{2}{3}$ fquare yards; and if the diftance of the center of one counterfort to that of the next be 16 feet, the thicknefs will be 4 feet, or $1 \frac{7}{3}$ yard; whence multiplying $23 \frac{2}{3}$, by 1_{3}^{4}, we fhall get 3_{1} cubic yards nearly , for the folid content of one counterfort. If we divide the total length 1035, by the diftance $\frac{16}{3}$, we Shall get 194 for the number of counterforts contained in the ravelins; and therefore this number 194, multiplied by the content 31 of one, gives 6014 cubic yards, for the total content. Confequently, the quan-

Sect. g. RORTIFICATION.
tity of mafonry contained in the faces of the raveling will be

> The content of the $\left\{\begin{array}{l}\text { wall } \\ \text { foundations } \\ \text { counterforts }\end{array}\right.$
> 19665
> 7590
> 6014
> 33269

It remains now to find the quantity of mafonry con, tained in the counterfcarp; fuppofe the fourth figure to be the profil, which is 16 feet high, from the foundation, 2 feet above, and 5 feet 2 inches near the foundation, according to our tables; the two parallel fides being added, gives 7 feet 2 inches, half that fum multiplied by the height 16 feet, gives $57 \frac{2}{3}$ fquare feet, for the area, or 6.4 yards nearly.

The length of the counterfrap is not found without a good deal of calculation, which we have explained in pur Elements, pages 214, 215 , and $2 \ddagger 6$; to which we refer our reader, and content ourfelves by giving the amount as found there, for the length before one front, which is 290 fathoms, or 580 yards; and as there are five fronts, five times this number, gives 2900 yards for the total length; this length being multiplied by the content 6.4 of the profil, gives 18560 cubic yards for the content of the wall, exclufive of the foundation and conterforts.

If the foundation is 5 feet deep, and 6.5 wide; then the product of 5 by 6.5 gives 32.5 fquare feet, or 3.6 fquare yards nearly, for the fection of the foundation; and this number multiplied by the total length 2900 , gives 10440 cubic yards for the total quantity of mafonry in the foundation.

Now becaufe the height of the counterforts is 27 feet, and their length 4; the product of 21 by 4 ; gives 84 fquare feet, orng $\frac{3}{5}$ fquare yards for the area of the counterforts; and if we fuppofe as before, the diftance from the center of one to that of the next, so be \mathfrak{F}^{2} feet, their thicknefs will be 3 feet or one yard;
yard ; therefore the content of one counterfort will be $9 \frac{2}{3}$ cubic yards.

If the total length 2900 yards be divided by 4 yards, their diftance, we thall get 725 for the number of counterforts, which being multiplied by the content $9 \frac{1}{3}$ of one, gives 6766.6 cubic yards, for the total content of mafonry in the counterforts. Hence the total content of the mafonry contained in the counterfcarp will be

$\text { Content of the }\left\{\begin{array}{l} \text { wall } \\ \text { foundation } \\ \text { counterforts } \end{array}\right.$	$\begin{array}{r} 18560 \\ 10440 \\ 6766 \end{array}$
	35766

Having thus found the quantity of mafonry contained in the feveral parts, according to the plan and profils here given, by adding them together, we fhall have the content of the whole, exclufive of bridges, gates, and under-ground works.

Content of the	body	99916
	ravelins	33329
	counterfarp	35766
	Total conten	168951

There computations may alfo be performed as follows; add the areas of the profil and foundations to that of one counterfort divided by 4 , and the fum multiplied by the total length, gives the whole content at once. Thus in the counterfcarp, the area of the profil is 6.4 yards, that of the foundation 3.6 , and that of the counterfort $9 \frac{2}{3}$, this laft divided by 4 , gives $2: 3 \frac{7}{\mathrm{~T}}$. Now the fum $12.3 \frac{1}{3}$ of thefe three areas multiplied by the total: length 2900, gives 35766 cubic yards, for the whole.content of the counterfcap; which is the fame as before : The fame thing will be, true in regard to the reft of the computations.

Although

Sect. 5. FORTIFICATION. I4I
Although this is not the exact content of the mafon: ry contained in this fortrefs, becaufe there are folids in every angle, fuch as are reprefented in the fourteenth plate of our Elements, which muft be conlidered when the works are meafured, as well as the coping ftones 3 yet this menfuration is fufficient for an eftimate, There are many engineers that are not fo exact in their computation; for how could it be, fince few of them have fcarcely the leaft notion of gepmetry, without which, it is impoffible to compute to an exactnefs any thing of this kind.

To compute the Excavation of the DITCHES.

The method of computing the quantity of earth contained in the ditches of the body of the place, and ravelins, is reduced to the finding their area's, and then to multiply the fum by the depth of the ditch, that is, by 16 feet, or $5 \frac{1}{3}$ yards. But by reafon of the irregular figures, they muft be divided into parts, in the following manner. From the point B draw BL perpendicular to the counterfcarp; from the angle F of the flank F draw F T, perpendicular to the line of defence G E, and from the point D, D V perpendicular to the counterfcarp I L produced; then if B K be the capital of the baftion produced, we muft find the fpace I L B D, the triangles G EF, D G H, and the circular fector L B K, in order to get the area of the great ditch before one of the fronts.

The length I L of the counterfcarp has been found in our Elements, page 214, to be 87.85 fathoms, or . 175.7 yards, BL is 40 yards by conftruction; and in the right angled triangle D V I, we have D I, 25.93 fathoms, or 51.86 yards, by page 215 ; and the angle D I V, 74 degrees and 35 minutes; by which we find the perpendicular DV to be 50 yards, and the bafe IV 13.78 , by adding I V to I L , we hall have V L , 189.4^{8}; and if we add the two parallel fides BL ,

DV, we get 90 , and half their fum 45 , multiplied by V L, 189.48 . gives 8526.6 fquare yards, for the face DVLB, from which we muft fubtract the triangle DVI, in order to get the face D I L B ; but the fide I V , is 13.78 , and the perpendicular $\mathrm{D} \mathrm{V}, 50$; half the product of thefe numbers, gives 344.5 for the area of the triangle DVI, which being fubtracted from the content of the area $V L B D$, leaves 8182 fquare yards for the content of the fpice D ILB.

The next thing to be found is the area of the triangle GFE, in which the fide F G is 76.39 fathoms, or 152.78 yards, the fide EF, 54.54 yards, and the fide E G, 170,28 yards; having the three fides of a triangle, the fegment E T is found by faying the fum 207.32 of the fides GE, $\mathcal{F E}$, is to their difference 98.24, as the bafe GE, 170.28 is to the difference 80.6; between the fegments GT, and TE, which being fubtracted from the bafe GE, 170.28 , gives 89.68, half of which 44.84, will be the leffer fegment ET; therefore the difference between the fquares of EF, 54.54 , and ET, 44.84, will be equal to the fquare of the perpendicular FT ; which will be found to be 31 yards. . Now becaufe the two triangles GFE, DGH, have the fame altitude, the fum of their bafes GE, 170.28, DH, 89.74 being mulciplied by the perpendicular FT, 3 I , half the product, gives 4030 yards for the content of the fpace E F G HD.

It remains now to find the circular fector LBK; the angle LBK in a pentagon, is 108 degrees, and 52 minutes, and the radius $B \mathrm{~L}, 40$ yards by conftruction; whence if we fay 7 is to 22 , fo is the radius BL, 40 , to the femi-circumference 125.7 nearly ; and again, 108 degres is to 108 degrees 52 minutes, or 108.86 degrees nearly, as 125.7 , is to the $\operatorname{arc} \mathrm{L} \mathrm{K}$, which is 76 yards; then half the product of this are, and the radius gives 1520 fquare yards for the content of the fector L B K.
sect. 5. FORTIFICATION.
Now if we add twice the fum of the fpace DILB, 8182, and the fector L B K, which is 19404, to the fpace HGFED, which has been found to be 4030, we fhall have 23434 fquare yards for the great ditch, before one of the fronts.
Laftly, The area of the ravelins ditch is to be found; if from the extremities of the face $\mathbf{N} \mathbf{Q}$, we draw $\mathbf{N} b$, Q n, perpendicular to the oppofite counterfcarp, $a n$: Then becaufe the width of the ditch is 24 yards by confrruction; and the face NQ, has been found in our Elements, page 214, to be 103.5 ; the breadth being multiplied by the length N Q , gives 2484 fquare yards, for the content of the area $\mathrm{NQ} \boldsymbol{n} b$.

In the right angled triangle $\mathrm{N} b a$, the perpendicular $\mathrm{N} b$ is 24 yards, and the bafe $a b$ has been found in our Elements, to be 8.72 yards; and half the product of thefe two fides, gives 104.64 for the content of this triangle.

The angle NQR has been found to be 73 degrees, and 30 minutes; whence, if we fay, as 7 is to 22 , fo is the radius 24 to the femi-circumference 75.4 ; and 180 degrees is to 106 . degrees, 30 minutes, or 106.5 degrees, the meafure of the angle $n \mathrm{Q} m$, fo is 75.4 to to the arc $n m, 44.6$ yards; and half the product of this arc and the radius, gives 535.2 fquare yards for the content of the fector $n \mathrm{Q} m$.

Now if we add the content of the triangle $\mathrm{N} b \mathrm{a}$, 104.64 to that of the rectangle $\mathrm{N} n, 2484$, their fum will be 2588.64 ; and twice that fum added to that of the fector $n \mathrm{Q} m$, gives 5712.48 fquare yards for the content of the ditch before the ravelin.

Therefore if we add the contents of the great ditch 23434 to that of the ravelin, we fhall get 29146.48 fquare yards for the fum, and five times this fum gives 145732.4 fquare yards for the content of the ditches round the whole fortrefs.

If this content be multiplied by the depth of the ditch 16 feet, or $5 \frac{7}{3}$ yards, we fhall get $777239.4 \mathrm{cu}-$ bic yards for the total content of the ditches.

This is not the content of all the excavations to be made; that of the walls, counterforts, and their foundations muft likewife be confidered; as there muft likewife be room for the workmen to work, which cannot be lefs than two feet, befides the thicknefs of the wall, the length and breadth of the counterforts; but the flopes of the walls are not to be taken in here, becaufe we have fuppofed the ditch to be dug perpendicular.

Fig. 2. Therefore if R T be the line terminating the height of the ditch from the foundation, we muft find the thicknefs of the wall at \mathbf{T}; which is done by adding one fifth of the height R M 14 feet, to the thicknefs B C above 5 feet, which gives 8 feet nearly, to which adding two feet more, according to what has been faid above, gives 10 feet, and this multiplied by the height $\mathrm{K}^{2} 16$ feet, gives 160 feet, or 17.7 fquare yards. Now the foundation DH being 6 feet deep, and 12 broad, to which adding two feet on each fide, gives 16 , and this multiply by 6 , gives 96 feet, or 10.7 yards nearly; this added to 17.7 , gives 28.4 fquare yards to the area of the profil; therefore 28.4 multiplied by the total length 2309.3 of the body of the place found before, gives 65584 cubic yards, for the quantity of earth to be removed on account of the wall.

The height of the counterforts K R is 22 feet, including the foundation, the length K H is 8.6 feet to which adding two feet more, gives 10.6 ; this multiplied by 22, gives 233.2 feet, or 26 yards nearly. Now becaufe the thicknefs of the counterforts has been made 4 feet, by adding two more on each fide, gives 8 feet, or $2 \frac{2}{5}$ yards, which multiplied by 26 , gives 6 g .3 for the quantity of earth removed on account of one counterfort; and as there are 433 of them, we Shall have 30007 cubic yards for the total quantity of
earth. This quantity, added to that above, gives 955.9 I cubic yards for the total quantity to be removed on account of the wall of the body of the place.

Fig. 3. To find the quantity removed in the rave. lin, where the height R M is 8 , and the thicknefs B C 4.4 , feet; one fifth of 8 is 1.6 , which added to 4.4 , gives 6 , to which adding two feet more, gives 8 ; this multiplied by 16, gives 128 feet or 14.2 fquare yards for the fection of the excavation.

The foundation has been fuppofed 6 feet deep, and 11 broad, by adding 4 to 11 , gives 15 , and this multiplied by 6 , gives io yards for the foundation; the fum of 14.2 and 10 , gives 24.2 fquare yards, which being multiplied by the total length IO35, gives 25047 , for the content of the excavation of the faces.

The height of the counterforts K R is 22 feet, and their length $\mathrm{KH}, 7$, to which adding two more, gives 9 , and the product of 22 multiplied by ' 9 , gives 198 feet, or 22 yards; and fince the thicknefs of the counterforts is 4 feet, by adding 4 more, gives 8 feet, or $2 \frac{2}{3}$ yards, which multiplied by 22 , gives 58.6 , for the excavation made for one counterfort ; and as there are 194 in all, this number multiplied by the content 58.6 of one, gives in 368 for the total excavation made for the counterforts in the ravelin. This added to the former, gives 36415 cubic yards for the total excavation.

Fig. 4. Laftly, It remains to find the excavation made for the counterfcarp: The thicknefs above is 2 feet, to which adding 2 more, gives 4 , this multiplied by the height 16 , gives 64 feet, or 7 yards nearly: The foundation is 5 feet deep, and 6.5 broad, to which adding 4 more, gives 10.5 , and this multiplied by 5 , gives 52.5 feet, or 5.8 yards nearly; and the fum of the foundation and the wall is 12.8 yards: and becaufe the total length is 2900 yards, the product of this number multiplied by 12.8 , gives 37120 cubic yards, for the content of the excavation.

The height of the counterforts is 21 feet, and their length 4 , to which adding 2 more, gives 6 , the product gives 14 yards for the content; and as they are a yard thick, by adding a yard more, gives 2, and 14 by 2, gives 28 cubic yards tor the content of one counterfort; and fince there are 725 , the total content of all the counterforts will be 20300 . And this added to that of the wall 25047, gives 45347 cubic yards.

Whence the content of the ditches	777239
of the town-wall	9591 of the walls of the ravelin of the counterfcarp
35415 Total content of the excavation of earth 95347 954592	

If it is known how many men are required to remove the earth, either from the glacis or the ramparts of the body and ravelin, and how much they remove in a day, the expence for removing the earth may be pretty exactly computed; for there is no fuch thing as to form an exact account, too many accidents happening during the time of the works of this nature, to come to any exactnefs; for example, if every cubic yard cofts fixpence to remove, and make the works compleat, without any other expence either for tools, bridges, and roads; the expence of removing the whole quantity would amount to 23864 pounds, 16 hillings.

The computation of the quantity of earth has been made upon the fuppofition that the ground is level; but as this is fcarcely ever the cafe in real practice, marks are left every where to fhew the different depths that have been dug, and a proper reduction is made, in order to get the true quantity of earth removed; for which reafon the reader mult confider what has been here done as the method by which he is to proceed when a fortification is to be executed; and that this is fufficiently exact to make an eftimate.

As to the mafonry, it may at all times be known what the ftones coft in the quarries, and for the bringing them on the fpot; as likewife the expence of cutting them, and to make the walls, when the fituation of the fortrefs is once fixed upon: the fame thing will hold good if the place is to be built either entirely or partly with bricks.

But there are many leffer articles, fuch as the gateways, bridges, cazemats, powder-magazines, ftorehoufes, guard-houfes, barracks, \&c. which cannot be eftimated without a great deal of experience in thefe kind of works : therefore an engineer muft be well acquainted with it before he is able to undertake fuch a work.

S E C T. VI.

To trace the plan of a FORTRESS on the GROUND.

IF the ground is uneven, filled with bufhes, hedges,' ditches, or any other obftacles, which hinder the ftations from being feen, it is neceffary to trace the exterior fides in a rough manner, in order to clear the ground, and then trace the works over again more exactly. If the fortrefs lies near a river, the fide next to it muft be traced firt, fo as to agree with the propofed plan; or if there are any buildings which are to be inclofed, you begin with that fide firt, which brings them in their proper fituation :- The greateft difficulties happen when the fortrefs is to be built on a defcent of a rock or hill, where the works lie not all on the fame level; in fuch a cafe, great care muft be taken to make proper allowances for raifing and falling the works, in order to place them in fuch a manner that the exterior works be always commanded by the
interior ones ; it is here where an engineer requires great fkill and knowledge to make the different parts anfwer their true intent.

There are two different inftruments commonly ufed in tracing the works on the ground; which are, the plain table and the theodolite.

The plain table is the moft fimple, but it is not fo exact ; for which reafon, I would never ufe it, but in finall forts, or works of no great confequence.

When a plain table is ufed, the plan muft be drawn on a large fcale, at leaft of 30 fathoms to an inch, which is faftened with fealing wax to the table, fo as to lay quite fmooth and even; then, by means of a ruler with fights, the angles are laid down on the ground, and the lengths of the lines meafured by a chain and rod: But when the theodolite is ufed, the lines and angles muft be found by trigonometry, in the manner given in our Elements of matherinatics.

This being done, the angles muft be traced on the ground with the inftrument, and the lines laid down as before. But to explain the manner of ufing both thefe inftruments, we fhall begin with the plain table, and Shew how the body of the place is to be traced, and then how this is to be done with the theodolite.

To trace the Plan of a Fortress with a PlainTABLE.

Plate VII. - Having faftened the plan on the table, in the manner mentioned before; which we fhall fupfofe to be a regular pentagon, of the fame dimenfions as in the laft plate : Suppofe the point O to be the center of the place: place the table exactly over the point O, fo as the center on the paper is exactly over the center on the ground, lay the edge of the ruler along the radius or capital $O A$, and turn the table round, till the point A is feen through the fights; place.
place a piquet or ftake in that direction; keep the table fteddy, and turn the ruler about the center O; till it is in the direction OB on the paper, and place a piquet at any diftance in that direction; keefing the table in the fame direction, lay the ruler on the capital OC , and place a piquet in that direction; and proceed in the fame manner with the capitals $O D$ and $O E$; this being done, fet off thefe capitals with a chain in the moft exact manner you can, which gives the five points A, B, C, D, E; now to be certain, that thefe points were rightly determined, the exterior fides A B, A E, \&c. muft be meafured with the chain, and if they are the fame length as they fhould be, you are certain that thefe points are right: but if the exterior fides are either too fhort or too long, the capitals mult be meafured again, till fuch time that every line on, the ground is exactly of the fame length as thofe on the paper.

Having determined the exterior fides, the table is placed at A , and by the help of the ruler turned fo as the two exterior fides AB, AE, on the paper coincide with thofe on the ground; then keeping the table in that pofition, and laying the ruler along the face A F of the baftion, and a piquet being placed in that direction; then the face A F is meafured by the chain, which gives the point F; the table is placed over this point fo as the line AF on the paper agrees exactly with the fame line on the ground; by keeping the table in that pofition, and directing the ruler along the flank FG; then a piquet is planted, and the length of the flank meafured, which gives the point G .

After this the table is carried to the point B, and turned fo as the exterior fides B C, B A, on the paper agree with the fame lines on the ground; keeping the table in that pofition, the ruler is directed along the face B L, and a piquet planted in this direction; then by fetting off 50 fathoms for the length of the face, from B to " L; the point L is given'; to which the
table being carried and turned fo as that the face BL upon the paper, agrees with that line, on the ground: then directing the ruler along the flank L H , and planting a piquet in that direction : by fetting of 27.27 fathoms for the length of the flank from L to H , which determines the flank and curtain.

Now to be certain, that this front has been rightly traced, the diftance from H to G muft be meafured, to fee whether it is 76.39 fathoms as it Mould be, and from the points A and B , it muft be obferved, whether the points B, L, G, and A, F, H, are in a right line; if this is fo, the front is rightly traced, and if not, it muft be traced over again, till every thing comes out right.

The fame operations muft be performed at every fide of the place, by which the body will be finifhed for the prefent, becaufe the rampart and parapet, as well as the thicknefs of the waH, are determined afterwards.

If the fortrefs is either irregular, or there are any buildings in the way, in fuch a manner, that the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, cannot be feen from the center O : The exterior fides A B, B C, C D, D E, muft be traced; that is, the table is placed at A, in fuch a manner, as the exterior fide AE on the paper be in the fame direction with AE on the ground; then, by keeping the table in that pofition, and directing the ruler along the fide AB, in which a piquet is planted, and the lengths of the two fides A E, AB, meafured, which gives the points $\mathrm{E}, \mathrm{A}, \mathrm{B}$; this done, the table is carried to the point B , and placed fo as the fide B A , on the paper agrees with that line on the ground; then the ruler being directed along the fide B C, and its length being fet off in that direction, gives the point C ; in the fame manner is found the fide CD; and if the diftance D E is found to be of its proper length, and the angle A E D agrees with that on the paper, the exterior fides have been
been rightly determined: after this, the reft is performed in the fame manner as before.

If the pofition of any other line is determined either by buildings or a river, you are to begin with that line and find by its means the exterior fide next to it, and from thence you proceed as before: Thus if the direction of the line C D is given, on account of a river, fo as to bring the greateft part of it into the great ditch; the table is placed at \mathbf{C}, and directed fo as the line $\mathbf{C D}$ on the paper agrees with that line on the ground; then keeping the table in that pofition, and directing the ruler along the exterior fides $C D$ and $C B$; the reft is finifhed as before.

When an old place is to be fortified, it often happens, that the fituation of one of the curtains is determined, fuppofe GH ; then the table is placed at G , and H_{2}, in order to find the flanks GF,HL; and then at L. and F to find the faces L B, F A, which gives the exterior fide $A^{\prime} B$; this being done, the rett of the work is performed as before.

To trace the Plan of a Fortress on the Ground with a Theodolite.

' When the fortrefs is regular, the theodolite is placed in the center O , and levelled by means of the crofs levels and Ikrews; fix the index to 360 degrees on the limb; turn the whole inftrument round till the north end of the needle hangs over the flower de luce, or 360 degrees in the box; there fix the limb of the inftrument ky means of a frew underneath, then difcharge the index, and turn it about till the vertical hair in the telefcope cuts the ftation A placed any where in the direction OA ; then adding the degrees on the limb, which we fuppofe to be a certain number of degrees exactly, without any fraction, to the number of degrees of the angle AOB B, and turn the index fo as'to cut exactly the fame number of degrees on the
limb; this done, place a flation in the direction OB ; adding again, the number of degrees of the angle B O C, to thofe on the limb, and turn the index round, till it cuts the faid number, by placing a ftation in the direction OC, and proceed in the fame manner all round, till the whole is finithed.

We prefer this practice to any other, becaufe the needle cuts always the fame number of degrees nearly, as the index does on the limb; but it may be done thus, after having levelled the inftrument, and fixed the index to 360 degrees, you turn the inftrument round till the vertical hair cuts any ftation placed in the direction OA ; then the limb is made faft by means of a fkrew, and the index difcharged, and turned about till it cuts the fame number of degrees as the angle AOB at the center, which is here 72 degrees, then placing a fation any where in the direction OB, and turning the index about till it cuts as many degrecs, as are contained in the angle A O C, which is here 144; by placing a ftation in the direction OC, the index is turned round till it cuts the angle A OD, 216 de. grees on the limb, and fo on to the reft ; this done and a ftation placed in OD; theny the index being turned round till the vertical hair in the telefcope cuts the firt ftation A; if the index cuts exactly 360 degrees on the limb the angles are rightly laid down, and this it will always do, if the inftrument has not been moved.

The angles at the center being laid down very accurately, the capitals $\mathrm{OA}, \mathrm{OB}, \mathcal{E}^{\circ}$ c. muft be meafured with the fame care; and to prove the work, the exterior fides $\mathrm{A}, \mathrm{B} \mathrm{C}, \mathcal{E}^{2} c$, muft alfo be meafured, and if they anfwer their dimenfions, every thing is right. But if the fortification is irregular, or the points A, B, $\mathrm{C}, \mathrm{D}, \mathrm{E}$, cannot be feen from the center O ; the theodolite muft be placed at any one angle as A, which we fuppofe to be determined by the fituation; after the inftrument is levelled, and the index placed on 360
degrees,
degrees, the whole inftrument is turned round till the north end of the needle points likewife at 360 degrees; the limb is faftened, with the fkrew and the index difcharged, which being turned, fo as the telefcope cuts the ftation in the direction A E, which is fuppofed to be given; then obferving the number of degrees which the angle made by A E, with due fouth and north, fuppofe 5 degrees, which being fubtracting from the angle E A B, of the polygon 180 degrees, then rurning the index round till it cuts ro3 degrees on the limb, which is the difference between 5 and 108; then placing a ftation in the direction A B, and fetting off from A to $B, 180$ fathoms for the length of the exterior fide A B: Now the theodolite being placed at B , and the index fixed to the limb, the whole inftrument is turned, fo as the ftation at A may be feen through the telefcope; then the limb is faftened, and the index difcharged, after having obferved the number of degrees it points at, to which adding the number of degrees contained in the angle ABC, and if the fum exceeds 360 degrees, fubtract 360 from it, and turn the index round, till it points at the given number of degrees, and lookingthrough the telefcope, the fation C is placed in that direction : the exterior fide BC being fet off on the ground, gives the point C ; from whence proceed in the fame manner as before, till you come to the point E; and when the inftrument is brought to the firft ftation A, and the angle EAB is found the fame as before, the operation is right.
It may be obferved, that by laying thus down the angles from the meridian, paffing through the point A, the needle will always point at the fame number of degrees nearly in the box as the index on the limb; which being carefully obferved at every ftation, will Shew whether any error has been committed, either by accident or miltake; and if there be any found you muft return to the former ftation to correct it; before
you proceed farther; by which you fave the trouble of going over the work again, for a miftake made perhaps at the beginning. Moft engineers content themfelves, by laying down fimply, the angles of the polygon without any meridian.

As all the angles and lines of a plan muft be found by trigonometry, when it is to be traced on the ground with a theodolite, you place the inftrument at A, and fet off the angle B A F, and the length of the face A F, and then at F , to make the angle AFG of the fhoulder, and when the length of the flank F G is meafured, the inftrument is placed at the point B, and proceed in the fame manner, to find the points L and H : then if the points $\mathrm{B}, \mathrm{L}, \mathrm{G}$, are in the fame right line as well as the points $\mathrm{A}, \mathrm{F}, \mathrm{H}$, and the length of the curtain G H comes out right, you are certain, that no miftake has been made: The fame operations are performed with regard to any other front, by which the body of the place is traced on the ground.

The next thing in hand, is to trace the counterfcarp. of the great ditch; which is done in this manner: make the angle MDN, equal to 74 -degrees, 35 mi nutes, according to what is faid in our Elements, page 214 ; and fet off from D to N twenty fathoms, for the width of the ditch, trace a line in the direction $\mathrm{N} R$, perform the fame operation before the face ER , and you will have the frait part of the counterfcarp; the round parts before the battions are determined by. placing piquets at certain diftances from each other, fo as to be 20 fathoms diftant from the faliant angles of the baftions; or if the ditch is not fo wide, and that the chain may reach crofs, faften one end of it to the piquet at D , and at the other end a loofe piquet, fo as to reach the point N ; then by turning the chain round the piquet at D , fo as to keep it always ftrait, with the point of the other piquet you may trace the round part on the ground.

To trace the raveling, through the middle of the exterior fide DE, mark a line S T, at right angles to it, in which fet off 50 fathoms, for the length of the capital of the ravelin, from the reentring angle S of the counterfarp to the point T; from the point T, trace two lines to the counterfcarp, which when produced, fhall meet the oppofite faces of the bation in a point X , within three fathoms, from the fhoulder M. As to the counterfcarp of the ravelins ditch, it is found by erecting perpendiculars at the extremities of the faces, each of 12 fathoms, for the width of the ditch: The round part is found as before.

To trace the Covert way and Glacis on the GROUND.

From the reentring angle a of the counterfcarp, fet off 20 fathoms for the femi-gorges $a b, a c$, of the place of arms; faften two chains or chords to two piquets placed at b and c, each of them of 25 fathoms long; which being ftretched, and fo as to meet at d, place a piquet there, and trace the faces $b d, c d$. If two points are marked with piquets along each fide of the counterfcarp, and at 6 fathoms from it, then the lines traced in thefe directions will determine the co-vert-way : and fetting off two perpendiculars to the fides of the covert-way, and at 20 fathoms from them, the lines traced through their extremities will determine the breadth of the glacis. The traverfes are eafily traced on the ground, from their conftruction on the paper.

This is the moft accurate way of tracing the plan of a fortrefs on the ground; and it may be obferved in general, that all works of what kind foever of this nature, are always to be traced, by the help of the lines and angles, either given by conftruction, or found by trigonometry. .

For inftance, to trace a horn or crown-work, on the ground; the angle which their branches make, either with the counterfcarp or the faces of the baftion, muft be found as well as the length of the branches; thefe. being once known and traced, the relt may be performed in the fame manner as in the body of the place.

The manner of tracing lunets, tenaillons, counter:gards, and all fuch works, differs fo little from what has been faid before, that it requires no farther explanation.

S E C T. VII.

The Method of building a FORTRESS.

AFTER having traced the principal or magiftral line of the works, the ground muft be levelled round the body of the place, in order to choofe a mean between the different raifings and fallings of the ground for the level of the place, which ought to be fuch that the earth of the higher parts may nearly fill up the cavities of the lower, and the center of the place muft be marked, and is generally about fix feet higher than the above mentioned level, in order to get a proper defcent for the running of the water into the ditch; this being done, a trench is dug all round for the foundation of the body-wall; but care muft be taken, to throw as much earth out of the trench and ditch, towards the center of the place, as will make the rampart and parapet; this may be done nearly by computing that part of the profil above the level ground, and cutting a trench of an equal fection; it mult likewife be confidered, how much earth will nearly be dug within the place, for cellars, conducts, faly-ports and cazemats. For the removing the earth out of ditches and underground-works, in fuch a manner, as juft to make

I. Couve Sculp.

Digitized by COOgle
make the rampart and parapet, and the reft for the glacis, is one of the moft difficult tafks that can happen; fince it requires great fkill to do it fo as not to have more than is wanted to compleat the work, and to prevent the moving of it over again from one place where it was thought neceffary, to another, which, in my opinion, is hardly poffible, and therefore the lealt removes will be the beft.

That part of the trench made for the foundation of any work towards the rampart, ought to be cut into fteps, as may be feen in the eighth profil, Plate VIII. and as near the wall as can be, without any inconveniency; becaufe, when the rampart is compleated, there will be only the earth which has been dug, that will prefs againft the wall; whereby its refiftance becomes fo much the flronger. In my opinion, the rampart fhould not be made till fuch time the mafonry is fettled and dry, which requires at leaft a twelve month, unlefs there is an abfolute neceffity for it; for when the damp earth is rammed againft a wet wall, it will require a great while before it dries, and perhaps this will not happen at all, unlers the mortar be very good; for which reafon, I would mix cinders inftead of fand with the lime, and lay this mortar about a foot and a half deep on the fide of the wall next to the rampart; this will fooner dry, and prevent the moiftnefs of the earth from penetrating into the mafonry.

To prevent the preffure of the earth againft the wall as much as is poffible, branches of all kind of wood are ftuck into the earth, by horizontal layers, with the fharp end as deep' into the unmoved earth, and as firm as can be, and a bed of earth well rammed, of half a foot deep, in the manner reprefented in the eighth profil; when this is done, the wall has time to fettle well, and becomes quite hard before it fuffers any preffure.

Of the Foundations and the manner of laying them.

Plate ViIII. As the foundations of all buildings in general, are of the greateft importance, in refpect to the ftrength and duration of the work; we fhall enter into all the moft material particulars, which may happen in different foils, in order to execute works with all the fecurity poffible; becaufe many great buildings have been rent into pieces, and fome fallen down, for want of having taken proper care in laying the foundation; and for a futher explanation we fhall join here plans and profils, adapted to the moft material fituations that can be found.

Firf, It is neceffary to examine very carefully the nature of the foil, upon which the foundations are to be built; for doing this, proper augures are ufed to bore holes in feveral places 10, 12 to 15 feet deep, in order to difcover the nature of the foil, and its hardnefs; or, if it is made of feveral layers or ftratas, which is commonly the cafe, the difference of their nature and goodnefs; this is known by their colour or the difficulty of piercing through them.

If the foil be of a good confiftence, for a certain depth, without any water or foft ground, and this holds fo all round the foundation, there need no other precaution be taken, than to lay the foundation four, five, or fix feet deep; only obferving to enlarge its breadth, in proportion to the heigth of the walls to be buil upon them: Since the higher the wall is the more weight the foundation muft fupport: Although this is felf-evident, yet engineers do not feem to mind it, becaufe they make commonly the bafe of the wall in proportion to the depth of the foundation, and not to the height of the wall.

If the foil be a hard gravel for about 10 or 12 feex deep, the foundation may be built upon it, withòut any danger of its finking; or if the foil be a ftiff clay,
it will likewife be good; the firft and fecond figures reprefent the profil and plan of fuch a foundation; where there are two or three courfes of large ftones to be put at the bottom; and the foundation projects by two or three feet before, divided into as many retreats, but not above a foo: behind; becaufe there is no danger of the wall falling backwards: this is the cuftom, but as for my part; I think there is no occafion for any projection at all backwards; fince the counterforts are fufficient to fupport the wall, and this projection might be of greater advantage before, if added to thofe already mentioned.

If the foil be not very firm or hard to a fufficient depth, or when fome parts are fofter than others; it will be neceffary to lay a grate of timber firft crofsways, and then long-ways; or fome lay them firft long-ways, and then crofs-ways, which feems to be beft, and well bolted together with wooden trunnels, as is reprefented in the third and fourth figures: Sometimes, thefe grates are boarded over with three inch planks, as is marked in the profil; at others large ftones are laid between the timbers of the grate, and laid even with them, upon which the foundation is afterwards raifed.

Some engineers choofe to raife the fore part of the grate of about a twenty fourth part of its breadth, in order to prewent the wall from being overfer by the preffure of the earth, as it has fometimes happened: this precaution feems to me to be very neceffary, efpecially when the rampart is pretty high; and the courfes of ftone in the foundation fhould have the fame inclination, excepting the laft, or the bafe of the wall ought to be level, if thofe of the wall are fo. I am fenfible, that fome engineers ridicule this practice, and fay, that all beds of ftone or brick fhould be exactly in a level; but Mr. Coeborn, who knew more of this matter than moft, if not all of our modern engineers, has not only laid his foundations in this manner, but likewife
wife the walls quite up to the top. This is confirmed by L'Abbe Dedier, in his Perfeil French Earineer, where he fays, that in repairing the works at Manbein, which were built under the direction of Mr. Coehorn, they found that the courfes of mafonry were perpendicular to the outward nope, whofe bafe is one fixth part of the height, and the walls were only about three feet thick above, withcut any counterforts. This being the cafe, and the walls being ftrong enough to refift the preffure of the earth, this manner of laying bricks or ftones has greatly the advantage over that commonly ufed.

If the foil be fand, and of no bard confiftence, : the grating the foundation is abfolutely neceffary; or if the foil be a foft loom or common earth, it is alfo neceffary to take this precaution; and in general, when the foil is doubtful, though not abiolutely bad, a grating fuch as this cannot but be very ufeful in preventing the walls from finking : and I muft repeat it again, when the wall or rampart is very high, particular care fhould be taken to fecure the foundation in the beft manner pofible; for it is better to do this, though fomewhat more expenfive, than to run the chance of making bad work at an eafier rate, which might prove more burthenfome at the end.

It is neceffary to obferve, that when there is any timber under the foundation, the firft cqurfe of ftones fhould be made without mortar, becaufe its corrofivenefs deftroys the wood; and in general, where any beams or timbers are laid into the mafonry, inftead of mortar, ftiff clay is ufed round it; and fome carpenters make thin cafes of wood round the parts which enter into the wall.

When the foundations are fo very bad, that the grate of timber mentioned before is not fufficient, but is hard after a certain depth; upon fuch an occafion, it is proper to drive piles, and then lay a grate over them, fuch as is reprefented by the fifth and fixth figure;
thefe piles are to be placed exactly under the croffings of the timbers, to which they are fattened with trunnels, and are to be drove into the ground as far as they will go.

As this method of laying foundations happens moft frequently in the works of a fortrefs, and is very expenfive, care mult be taken not to make any more than what is neceffary. In order to find the proper length of the piles, one or two are drove as deep as they will go, and then cut a certain number of the fame length, and when thefe are drove, and the depth of the foundation remains the fame, more are cut of the fame length; but if the foundation changes, the reft muft be made accordingly. By this method a good deal of timber may be faved; whereas, if the piles are all cut at once, fome will happen to be too long, and perhaps fome too fhort, which waftes a great deal of timber to no manner of purpofe.

Some engineers drive piles into every corner of the fquares formed by the timbers, and none under the frame, as is reprefented here; but this method mult appear to every judicious reader, notfo good as the former, becaufe the frame is. fupported by nothing but the earth, which, being but foft, muft give way to the great, weight of the wall preffing upon the frame.

Others drive not only piles under the grate, as we have faid above, but likewife two in every fquare, that is, in the oppofite angles; but it feems to me, not worth while to make fuch expenfive work without an abfolute neceffity, and when no other method is practicable.

Befides the piles under the grating, others are to be drove at the outfide next to the ditch, as is reprefented in' the plan by the letter a; their number is uncertain, and ought to be regulated by the goodnefs or badnefs of the foundation. In both foundations, reprefented by the third and fifth profils, the outfide timber next ta the ditch ought to be cut in fuch a manner that the
wall may reft upon part of it , and the other part prevent it from niding into the ditch, or elfe a fmaller timber flould be faftened with bolts upon the larger. Mr. Belidor gives an example of a wall niding in the ditch, at Bergue St. Vinoc, in Flanders, which was the face of a ravelin; the fame thing happened fome years ago, at our wharf here, at Woolwich, for the middle part of it, llid five or fix feet into the Thames, becaufe the foundation was only clay rammed even with the bed of the river, and which would have been fufficient, had the precaution above-mentioned been taken.

We have mentioned before that fometimes planks are ufed to cover the grating, and fometimes not; where there is plenty of Itones, thefe planks may be faved; but in walls made of brick they are abfolutely neceffary; for they being but of a fmall fize, thofe which reft upon the timber will not be able to fuftain thofe which are between them.

If the foundation is either all rock, or only partly fo; the bed of the wall is to be funk about 6 inches or fomething more into it, in the manner reprefented by the feventh figure, to prevent the wall from niding, which otherwife might happen, becaufe mafonry feldom binds fo well with the rock as to make it firm and durable. When the bed is made, care muft be taken to fweep it very clean, in order that no rubbih or duft remain in it, and after this, it muft be wet as the wall is made; by doing fo, the mortar will enter better into the pores and fmall cavities, the mafonry will likewife bind with the rock in a more eafy manner, and form in time but one continued folid ftone.

Alchough rock is the frongeft foundation that can be built upon, neverthelefs, engineers look upon it as one of the moit difficult pieces of work to be met with; their reafon for thinking fo is, that they are feldom level, but raife and fall continually, by which the work changes its profil at every fmall diftance, and

Sect. 7. FORTIFICATION.

to raife the foundation to a proper level, and bind the mafonry to the rock in a ftrong and firm manner, meets with the greateft difficuley.

The fecureft manner of proceeding in fuch a cafe, is, to clear the rock, as well as can be, from all duft and rubbih, in the manner obferved before, and to fink from four to fix inches into it; then raife the lower parts with good mafonry made of very thin but ftrong mortar, fo as to be in the fame level with the higher ones. This work muft be left fome time to dry and fettle, otherwife, that part of the wall which ftands upon the made foundation will fink and break off from the parts which ftand upon the rock.

Sometimes the rock will rife at one end nearly as high as the wall itfelf; in this cafe, the work muft be raifed to a level, of about fix feetfrom the bottom, and then left to dry and fettle for fome time; after that, it may be raifed to the fame height again till fuch time as the whole wall is finifhed; and to prevent the workmen from ftanding ftill, feveral parts may be undertaken at the fame time and carried on alternately.

- Sometimes it happens, that the rock rifes gradually behind, nearly as high as the wall, or, which is the fame, that a wall is to be built againft the rock; in this cafe, the rock muft be well cleared from all dirt and rubbifh, and if it is too fmooth, it muft be pickt, or finall cavities made in it, that the mortar may lay hold of, and bind it with the mafonry; and the work muft be carried on gradually and lowly, otherwife the mafonry will naturally fink and tear off from the rock.

Mr. Belidor propofes a method for building walls in this cafe, which, he fays, has often been practifed by fome Frencb engineers with good fuccefs; that is, inftead of ufing common mortar and ftone in the ufual manner, they prepare what is called ftone-mortar; which is made of thin but ftrong mortar, mixt with ftones, about the fize of a wallnut, a little more or lefs;
then they fet a kind of coffer without a bottom, cut underneath, fo as to agree nearly with the unevennefs of the rock; then this coffer is filled with mortar, and let ftand till it is dry and pretty hard; then they take the coffer away, in order to place it elfewhere. The reader may eafily perceive, that the furface of this mortar is laid fmooth and level, and that, when it is well fettled, it will ftick much better to the rock than any other kind of work whatfoever; thefe kinds of walls become in time as hard as ftone itfelf, as appears by the remains of fuch as have been found here, in France, and in Germany.

In fome parts of Scotland, in Ireland, at Gibraltar, and Mabon, the rocks are generally of lime ftone; in fuch a cafe, no better work can be made, than to mix the ftones of the fame rock with the lime; this will, by the likenefs, of the parts, form a work that will join to the rock, and in time become as one continued ftone:

It happens fometimes that under a bed of gravel, clay, or any other hard confiftence, there is a foft watry foil or fand, to a great depth; where it would be dangerous to drive piles, on account of the fources or fprings, which are generally under thefe places, which, when they get once a vent or opening, fill the trench made for the foundation in a fhort time full of water, in fuch a manner, as there is no poffibility to build there. When this happens, a gutter mult be made to lead the water out of the trench into fome well made for that purpofe, if none is found near enough, and engines fet to work to draw the water out of it into fome lower place or ditch.

It may happen, that the water comes fo faft into the trench, as not to be drawn off; in both cafes, a ftrong grate of timber muft be made, and planked over, which being laid over the foundation, and faftened in fuch a manner, as not to fhift its place, then the mafonry is built upon it, by which it will fink gra- before the wall is continued.

I have been affured by people of veracity, and judges of thefe works, that many fuch inftances happen in Ruffa, as well as in Flanders, and yet when the walls are finifhed, they ftand neverthelefs as firm as if they were built upon a ftrong foundation; it is certain, that thefe walls will fink, but then the bufinefs is to make. the whole together without clinks or breakings; which can no otherwife be done, than with very good materials, and great care and induftry.

Notwithftanding that no water appears above ground, and that there is only a hard cruft of five or fix feet deep over a fwampy foil, yet it is neceffary to lay a ftrong large grate under the foundation; by taking care to fink the trench as little as can be done, for the fafety of the work; and the foundation mult be carried all round alike by horizontal courfes, and no new one begun before the laft be quite finifhed, fo that if the ground underneath gives way, it may be preffed alike every where, and fink together.

This method of carrying on the foundation alike all round the work, fhould be obferved every where, excepting on rocks, or fuch a hard fubftance as cannot give way, where it may be done by parts one after another; only obferving to join them well together, and by fteps, that no two joints may be over ope an: ther.

There are fome fituations, which, befides being fwampy, the trench dug for the foundation fills in a fhort time with water; the method ufed upon thefe occafions, is, to open only as much of it as can be made in a day, and the ftones are laid, without any other precaution, on the ground, and the work is carried on as faft as poffible, till the wall is above the height to which the water rifes; but this foundation mult be made yery broad and by retreats; and the fones laid
in terrafs mortar, that it may foon grow hard; when this is done all round, and the work fettled, the reft, is built ip the ufual manner.

Thefe kind of foundations are very common in Flanders, and Mr. Vauban was very much puzzled at firt how to proceed, till fome workmen of the country, who had been ufed tó them, put him in a method of it: I have feen the fame at Douay, where they dug a trench of about 40 yards, and three feet deep; and as faft as it was opened the mafons worked at the foundation, which was raifed fix feet high; though the next day half of it was under water, yet the "work" Itood' as well as if it had been built upon a folid foundation.

As the different fituations and foils require different precautions, it is impoffible to give particular methods for every one; the moft fecure and probable, by which an engineer may fucceed, 'is, to confult the workmen, who either live upon the fpot, or near it, and who frave been employed in fuch foundations; for they generally know beft, what method will moft likely fucceed; by confulting feveral upon the fame fubject, if they differ in their opinion, which is often the cafe; it is the engineers bufinefs to judge what is beft to be done, and from his own exxperience, joined to that of the workmen, deduce the method; by which he is to earry on his work : But, notwithftanding all human precautions that can be taken, yet accidents will happen, which are to be repaired as foon as poffible, and whereby the engineer will learn how to avoid them afterwards, in the remainder of his works.

We have endeavoured to give here moft of the feveral cafes," which commonly happen, in all foundations made upon the land; and which, if ftudied with caré, I do not doubt, but an èngineer with a moderate fhare of practice and knowledge will be enabled to perform fuch works: But the manner of laying the foundations in water for bridges, nuices, moles, and piers for har1.
bours,
 of this work.

How to carry on the Works of a FORTRESS.
The firt thing to be done; is to know what part of a fortification is to be built firft : Some engineers begin with the covert-way, and fecure it with pallifades, in order, they fay, to prevent the enemy from difturbing them in carrying on the works: This reafon may. do in time of war, and in a place where the enemy can come at; but in a time of peace, it is entirely groundlefs, becaufe it is a difficult matter to know exactly how much earth is required to make the rampart of the body of the place, and thofe of the outworks; and therefore by leaving either too much, or too little, the carrying it afterwards to their proper places caufes a great deal of fuperfluous expences, entirely owing to the want of fkill in the engineer.

Others chufe to begin with the flanks, and then go on with the faces of the baftions, that in cafe an enemy thould endeavour to difturb them, they might keep him off by means of the guns placed therein: This may do very well when the foundation is good, but would by no means be proper, where they are bad, for the reafons given before; becaufe if one part fhould be built before the whole foundation is laid, it would be fettled before the next is finihed, by which the laft would break off from the former by its fettling: This will even happen, when the foundations are good; it is certain, that when the foundations are once laid all round, of about fix feet high, and well fettled; then the reft of the wall of the battions may be finifhed firft; and forafmuch, that when they are full, require a great quantity of earth, which is eafily carried through the curtains; whereas the earth for the ramparts of the curtains cannot fo well be carried through a paffage in the battion; but, however, every engineer may have M_{4}
his
his particular reafons, for beginning the works fooner: one way than another.

When the foundations of the body of the place are laid, the firt thing to be done is, the openings for the common fewers in proper places, to carry off the filth and rain water of the ftreets; and it mult be particularly obfervèd to give them a proper defcent; from the center of the place towards the ditch, that the water may carry off the mud, otherwife they will foon choak up, and require continual cleaning; and they fould always be carried either under or near the places where the bog houfes are to be made, that the water may carry off the filth, and prevent their ftinking in warm weather, and their being naufeous to the inhabitants.

If there are any powder-magazines to be made in the baftions, or any other building, fuch as an hofpital for the fick and wounded in time of a fiege, or ftorehoufes to lodge ammunitions in, they mult be built at the fame time as the baftions; in order that there may be no ufelefs removings or diggings of earth, which would create fuperfluous expences. If there are galleries for mines to be made in any of the works, they thould be begun at the fame time: In general, all un-der-ground works fhould be firft confidered, and begun as foon as the foundation of the walls are laid: For which reafon, not only the plan and profils of a fortrefs fhould be made at firft, but likewife, drawings of the moft minute parts of 'all the neceffary buildings, which depend on the fortrefs, with their dimenfions marked upon them, and expreffed in the eftimate.

S E C T. VIII.

Method to be obferved in making:

 MASONRY.HAving entered into all the moft neceffary particulars of the materials ufed in the building of a fortrefs, we fhall now thew how they are to be applied: in the beft manner; and as ftone mafonry is by muchthe greateft part, we fhall begin with that firft, and then proceed with the reft,$_{2}$ each in their order.

As mafonry made of hewn ftones is certainly the beft, but at the fame time fo expenfive, that few works are hardly ever wholly built with them; for which; reafon, engineers content themfelves to make the lowen part of the wall of them, for about 8,10 or 12 feet high, as likewife the falient angles quite up to the top: and the hardeft fort are chielly ufed at the angles, and in thofe places where a ftrong current, or the fea can beat againft them : For if the ftones are not very hard, the water ftriking with a great velocity, in an oblique direction, wears them prefently out; as may be feen at Port/mouth.

Mafons diftinguifh their hewn ftones by two names, viz. ftretchers and headers; that is, fuppofe a ftone ta be twice as long as it is broad, then if it be laid fo as the length goes into the wall, it is called a ftretcher, but if the length appears on the furface of the wall, it is called a header. Thefe ftones are laid alternately, a header, then a ftretcher, through the whole length of the wall; and at the angles, that which is a header one way is a ftretcher another.

The engineer or his overfeers, ought to be very diligent, to fee that thefe ftones are well fquared, and when they lay them, that they bed well, that is, that they
they lay quite flat on each other; for the mafons often are very carelefs in their work, either for the fake of fpeed, or out of meer idlenefs; and when the fones are laid, and bed not well, they put wooden wedges under the corners, to fave the trouble of removing and fquaring them a-new; which hould be prevented as much as poffible; otherwife a wall can never be ftrong, and firm, and therefore has not a proper ftrength to refift the preffure of earth which is againft it.

The ancients were fo very nice in all their public buildings, that no joint fearcely ever appeared; which they did by rubbing the joining furfaces againft each other, and laying the fones without mortar, leaving the outward furface rough, till the fones were all laid, and then making it fmooth: But this precaution is never taken now-a-days, for which reafon, no modern building comes up to thofe built by the ancients, either for beauty or ftrength: For you may fee in the fineft buildings in England, the joints in columns or pilafter, half an inch wide, filled with very bad mortar, which by the weather has been worn out in a fhort time, to the great fhame of the modern architects.

The beft ftones being ufed in the facing, the reft is made with fmall fones, called rubble; but care muft be taken, that this rubble work is well performed, in making the workmen choofe thofe which lay clofe to each other, and that they fill up every part as well as they can, and not by a quantity of bad mortar, as they certainly will, if not prevented.

If the walls are to be built in water, the ftones muft be laid with terrafs mortar, thofe parts which are fometimes dry and fometimes wet may only be laid in tile or cinder mortar: when we fay that ftones are to be laid in terrafs mortar, it is meant only round the facings, and the reft is filled up with good common mortar; becaufe terrafs is very dear, as little is ufed as can be; I would advife the engineer, to lay all the facings with cinder or tile mortar, if he intends to make ftong work.
work. For the mortar commonly ufed in facing the works, is generally fo bad, that it requires to be new done in very few years; which is not only expenfive but likewife troublefome.

The bricklayers and mafons content themfelves with making the facing look well; for which reafon, when they build by contract they make ufe of mortar, with very little lime in it, that is, no more than to keep the fand together; and when the wall is run up, they fcrape a litte out of the joints, which they point with a better fort; fo that the wall looks as well as if it had been built in the beft manner. The only reafon I can find, for their making worfe work here than any where elfe, is,' that moft people in and about London build upon leafes, fo that they contract with the bricklayer to do the work, never troubling themfelves whether it is well made or not; thinking if 'it but lafts their time it is fufficient.

This is what the workmèn are fo ufed to, that when they are employed, by the public, or government, it requires the greateft care and conitant looking after them, to make them do better work.

The back part of walls, in ramparts and counterfcarps, fhould be laid, for the depth of about two feet, in ftrong mortar, fo as to dry foon; and the earth thould not be laid againft them before a twelvemonth; for if the wall is not well dried beforehand, the continual dampnefs of the earth will prevent it from drying afterwards; and this is often the cafe, that walls cannot refift the preffure of earth againft them, which they otherwife in all probability would have done, had the work been fet before the earth was laid againft them.

The manner of building arches, and other works un-der-ground, requires fome particular precautions, befides thofe mentioned already, which we fhall mention, when we come to treat of thefe kind of works.

Mr. Belidor fays, that hard ftones fhould be laid in ftiff mortar, and foft ones in foft mortar ; which feems to me quite contrary to the nature of the thing: becaufe the pores of hard fones being very fmall and clofe, the mortar cannot enter into them without being very foft and thin; on the contrary, foft ftones have larger pores, and are very fpongy, and therefore require a greater fubftance to unite them; whereas thin mortar will foon be fucked into the ftones, without being able to unite them. This rule is obferved by joiners, for when the wood is hard, they make ule of thin glue, and on the contrary, in deal or other foft wood they ufe that which is thick and ftrong.

The manner of building with bricks is much the fame as that of building with ftone; but it muft be obferved, that as bricks cannot be cut to the hope of the wall, and are always made fquare; the bricklayers make the joints at the nope fide bigger than within, in order to follow the propofed profil, which is a very bad practice; for the weather beats the mortar out of thefe wide joints, by which the wall requires to be new pointed every two or three years; we have initances enougli of this kipd, not proper to be mentioned here.

Anocher defect arifes from this practice, which is that the courles of the bricks length being at right angles to the Gope, and the reft lie in a level, by which they make an angle, whereby the bricks can never bind fo itrongly together, as if they were all laid in the fame plan; whereas, if the outward flope be made one fixth part of its height, and the courfes perpendicular to that hope, and to lie in the fame plan, the bricks will bind much better together, and make a ftronger work; as likewife refift more the preffure of the earth, as we have obferved before.

1 know that fome engineers, and moft workmen, fay, that the courfes of itone or brick fhould always be in a level, fo as to bed well, otherwife, the wall will not fupport itfelf upright; but this is no more than a conceit

Sect. 8. FORTIFICATION.
conceit of the workmen, who will never go out of the old beaten road; for they do not confider that the preffure of earth endeavours to throw them forwards; and therefore, by oppofing a greater force to this preffure, the walls muft laft the longer; what they fay may do very well in civil architecture, but by no means in the military way.

An engineer fhould always confider, what method anfwers beft the propofed defign, and never follow the advice of others, unlefs it is agreeable to fenfe and reafon; for he that follows blindly the practice of thofe that went before him, will never become a good engineer: This may chiefly be the caufe of making fo few improvements in fortification; for whoever reads authors that wrote upon the fubject fome hundred years ago, will be furprifed, to fee what few alterations have fince been made, and thefe are, the moft part, for the worfe.

Another great defect in brick-work, is the large joints made with bad mortar; they are commonly three quarters of an inch, whereas, half that thicknefs is more than fufficient: A certain engineer piqued himfelf, to have all the courfes exactly three inches; and as the bricks are two inches and a quarter thick, the joints were three quarters; but this ought not to furprize any body, confidering the humours of the perfon, which are altogether extraordinary, as well as moft of his actions.

Sometimes bricks and ftones are ufed together, efpecially, in places where fone is fcarce: This may be done to good purpofes; for if the wall begins with ftone to about fix feet above ground, and then carried on as high with bricks, and over this, a bed of large ftones is laid, then bricks, as before, and another bed of flones; it will make better work than bricks alone; becaufe, ftone being heavier than bricks, they keep the work better together by their own weight.

When large ftones are fcarce, the facings of walls are made of bricks, and the reft with rubble tones; but as it is hard to bind ftones and bricks together, the work becomes very bad, unlefs great care is taken, to intermix them in a proper manner. The Frencb engineers make the bricks go off from the facing towards the back part of the wali, in an edge, or like an inclined plan, and fill the reft with ftones; this may be done another way, by carrying here and there a courfe of bricks quite crofs the wall, of three feet broad, and two high, at proper diftances from each other, which will bind the wall pretty well together. In fhort, the engineer ought to judge from the materials, and his own experience, what is beft to be done upon all occafions.

$$
S E C T . \quad \text { IX. }
$$

Of Casemats and all forts of under-ground W ORKS.

THE method of building the walls of under: ground works requires much more precaution, than thofe that are above, not only becaufe they are to be bomb-proof, but likewife to keep out the damp or wet, that whatever may be depofited in them, as men, ammunition, and provifion in time of a fiege, may keep dry, and be preferved without any damage.

In fmall fortreffes, there cannot be too many underground lodgements, becaufe nothing can be fecure otherwife ; fince the fhots and fhells can reach every part of the place, and deftroy it : Therefore there fhould not only be a fufficient number of magazines that are neceflary to lodge ftores and ammunition, but likewife hofpitals for the fick and wounded, and places to reft the fatigued foldiers, in a fecure manner. Whereas

Sect. 9. FÓRTIFICATION.
in large places, there is always fome part or orher which are fécure from fhells or fhot, which may ferve to lodge every thing that is not immediately wanted.
But before we enter into the particulars of their confructions and fituations; it is neceflary to explain the manner of building them.
As we have but few works of this kind here, and moft of them were built by fuch engineers as were not fkilled in them; we fhall infert the method purfued by the French, given by Mr. Belidor in his Science des Ingeniures; as knowing that he had it from the mott knowing and experienced engineers of France.

We fuppofe, fays he, that the maronry has been built with all poffible precautions, that is, the fone or bricks to have been laid in mortar made of the beft lime to be had, mixt with tile or cinder duft, and lefs to dry a fufficient fpace of time before it is covered with a particular kind of cement, made according to the following manner:

This cement is generally made of tourneys cinders, which is nothing elfe but the cinders, that are found in lime kilns, where they ufe coals, mixt with the fmall particles of lime ftone : this is beat and prepared every four or five days, for the fpace of fix weeks; obferving to put only a fmall quantity of water to it the firft time, and none afterwards; or this cement is made with mixing one third of unflaked lime, the beft that can be had, with two third's of terrafs, or inftead of terrafs two thirds of pozolano, or elfe old tiles well burnt, reduced into duft, and paffed through a fieve: but whether the one or the other of thefe ce'ments be ufed, the parts muft be well reduced into duft feparately, with a hand mill, and afterwards the two materials well beat and mixed together, and to repeat this feveral times without any water, excepting at firl.

Before the cement is applied to the vaults, it is neceffary that the mafonry be well finihhed, and had a fufficient
fufficient time to dry, which is reckoned to be about fix months; then the joints mult be well cleaned with a fmall iron hook, after that the duft and dirt being fwept off very clean, fome water is fprinkled a a it with a water-pot; then the cement is laid over it, being well worked immediately before, of about an inch and a half thick every where, and as even as can be; which is beat all manner of ways with a wooden battle, of two inches broad only, in order to prefs the cement better into the joints; after that, it is made quite fmooth with a flat iron, fuch as are ufed for ironing linen, till it begins to be hard; and for fome time it muft be rubbed over with a mop dipt into cement made very thin, once every day, and then paffed immediately over it with the aforefaid iron, to make it fmooth; and when this is done, it is covered with ftraw, to prevent the heat from cracking it 3 this work is continued till fuch time that no cracks appear in it: after that it is wathed over for five or fix days as before, without polifhing or coverings.

In applying the cement, care muft be taken, above all things, to make it fmooth and even, and to terminate the upper part in an angle like a roof; and fo as no ftone appears through the cement. This being done, the cement is covered with a bed of gravel or coarfe fand of four or five inches thick, laid every where very fmooth and even; and upon this bed of gravel is laid another of earth of about a foot and 2 half thick, well beat and rammed down; and then more earth is put upon it, and beat down; this is continued quite up to the furface of the ground: Mr. Belidor fays, that the vaults in the tower-baftions of New Brifac were built in this manner.

I fhould think, that if a bed of well-prepared clay of about fix inches deep, was laid over that of the gravel, and over that one of earth, it would much better prevent the water penetrating to the cement, than earth only; as to the gravel, its ufe is to fuck in the dampnefs
dampnefs of the ground above it, and to keep the moifture from the cement.

Mr. Belidor propofes another method, which, he fays, has tien ufed in the building of a famous orangery at Verfatlles, with great fuccefs, and which is as follows.

As foon the vault was made, it was well cleaned, and a bed of rubble fone laid over it, of 18 inches thick, without any mortar, only duft of lime thrown between the joints; upon which was laid a bed of the fame duft four inches thick; and then a bed of pebble ftone, and then another of flat ftone of a foot deep; which was covered with another bed of lime duft of four inches thick : this, he fays, was continued to the very top, and even with the level of the terrafs above it : This vault has ftood hitherto the weather, without the leaft change or alteration.

The fame author fays, that fometimes a bed of clay a foot thick has been laid over the firft bed of ftone, and one of mortar three or four inches thick over the laft, and then the earth. To fecure the piers of underground vaults againft the water filtering through the earth, a wall of dry ftone is made againft them on the outfide, of two feet thick, without mortar, the joints being filled with gravel or coarfe fand; and the wall is continued to within two feet of the roof of the vault; the reft being finifhed with good mafonry, and covered with the bed of cement, which lays on the vault, and is extended over the wall : this precaution will fecure the piers from all dampnefs; but it ought to be obferved, that this dry wall fhould be two feet lower than the foundation of the vault, in order to make a gutter for carrying the water into the ditch.

S E C T. X.

Of SALLY-ports.

Plate IX. CAlly-ports, or poftern-gates as they are fomeStimes called, are thofe under-ground pafages, which lead from the inner works to the outward ones; fuch as from the higher flank to the lower, or to the tenaills, or the communication from the middle of the curtain to the ravelin. When they are made for men to go through only, they are made with fteps at the entrance and going out, as may be feen in the firt and fecond figures; it may be oblerved, that when the rampart is not of a fufficient height, as it happens here, it being but 15 feet high, the entrance has been funk 5 feet below the level, in order to fecure the arch againft fhells; and the outfide of the arch is circular as well as the infide, and not in the form of a roof, as Mr . Belidor would have it ; becaufe it is not poffible to make them fo, unlefs the rampare is very high; neither can the infide of the paffage be above 6 feet wide, and the height but 8 and a half, otherwife it will not be covered with a fufficient quantity of earth to fecure it againt accidents.

There is always a gutter or fhore made under the fally-ports which are in the middle of the curtains, for the water which runs down the ftreets to pafs into the ditch, as we have marked in the firt profil; but this can only be done when there are wet ditches, becaufe the water would fettle in dry ones before the fally-port, and make it difficult to go out and in; befides, the fmell of this dirty water would become very offenfive in warm weather.

Thefe under-ground paffages are fecured by two ftrong doors, the one at the entrance and the orher at the going out; the outlide of the paflage is generally walled
walled up in time of peace, leaving only an opening like a window to let the air in, that it might not be too damp, and rot the doors. The fide-walls, or piers, as well as the arches, are two feet thick above, and two and a half near the foundation; there being no occafion for counterforts, as Mr. Belidor has them; the wall being of a fufficient ftrength to refift the preffure of the earth, as we have found by computation. The white fpace above the arch in the firt figure, terminated by two parallel lines, reprefents the cruft of cement laid over it, and the dotted face above this, the bed of dry ftone, fpoken of before: the front wall at the entrance is raifed three feet above the rampart, to prevent people from falling down in the dark.

At the fides of thefe paffages, powder-magazines are often builc, which are very neceffary, for having ftores and powder nigh at hand to tranfport them into the outworks in the time of a fiege; they are made in proportion to the quantity of ftores wanted. Thofe marked in the fecond figure are 15 feet by 18 ; bur it muft be obferved, that their width depends alfo on the height of the rampart; becaufe there mult at leaft be 3 feet of earth above them, in order to make them bomb-proof. The walls as well as the arch are but 3 feet thick, lloping at the outfide, fo as to be but four near the foundation, without any counterforts.

When fally-ports ferve to carry guns through them for the outworks, inftead of making them with fteps as is repreiented in the firft and fecond figures, they muft be made with a gradual hope, as is reprefented in the third and fourth figures; and they muft then be 8 feet wide: If the rampart is but low, the arch may be made elliptical; in fhort, in the building thele paffages, regard mult be had to the profil of the rampart, and to the ufe they are intended for, whereby the proper dimenfions may be determined.

When they are made with a gradual nope, the bricks of the piers or fide-walls mult be made by ho-

180

$\mathrm{r}_{\text {izontal }}$ courfes, as high as the foring of the arch; and the arch idfelf perpendicular to the flope, in the manner reprefented by the third figure : there are two folding doors, one at the entrance, and the other at the going out, that they may leave a free parfage for guns and other warlike engines, and fometimes feveral of thefe doors are made, in order to defend the paffage; for which purpofe, wickets and loop-holes are made in them, to retire through and defend them one after another.

The walls are about two feet and a half near the foundation, with a flope on the outfide, fo as to be two feet only near the fpring of the arch, and the arch itfelf is but two feet without any counterforts; becaufe the weight of the arch is fufficient to counterbalance the preffure of the earth. The magazines on both fides of this paffage are 14 feet fquare, and the walls are half a foot ftronger than the others. The top of the arches of both the paffage and the magazines are covered with a cruft of cement, and above this with dry Itones, as well as the fide-walls, in the fame manner as has been mentioned before.

In fortreffes where a river paffes through the ditch, fuch a paffage as the laft is made to water the horfes; which are fometimes walled up in time of peace, and at others left open, with a frong gate to lock them up at night; but as they are the fame as the former, we fhall fay no more about them. As to the foundations and many other particulars relating to thefe paffages, we fhall leave them to the judgment of the engineer, who is to confider well beforehand all the conveniencies, and every minute circumftance, before he begins the work.

It is cuftomary to build hofpitals for the fick and wounded, under the level ground of the baftions, as likewife powder-magazines, flore-hcufes, and ovens to bake the bread; thefe buildings confift of a long paffage from the center of the gorge towards the fali-

Secti

Plan of a: with a

Sect. ir. FORTIFICATION.

ent angle, with as many rooms on both fides as are thought neceffary; fome of them have chimnies, and others air-holes conning out within the baftion; thefe buildings are efpecially made when there is a cavalier in the baftion; becaufe they need not then be funk under the level, there being always a fufficient quantity of earth above them, to refilt the force of the fhells. Thefe works are built in the fame manner, and with the fame precautions, as the former.

S E C T. XI.

Of Casemats in the Ravelin .

AS we efteem the ravelins to be the moft effential of all the outworks of a fortrefs, fo we think that nothing contributes fo much to a long and ftout defence, as the making them capable of all the refiftance that is poffible: For a town defended as it ought to be, can never be taken, till fuch time the enemy is mafter of the ravelin in the front attacked. Coeborn and fome others have made their ravelins with cafemated flanks, but for what reafon is unknown to me; though feveral pretended engineers look upon them as confiderable works: It is therefore worth our while to examine their ufe and perfection, in order that young engineers may not be mifed by the erroneous opinions of their fuperiors.

As thefe flanks cannot defend the ravelin, in which they are, their intent muft neceffarily be to defend fome other work: which can only be the breach in the faces of the baftions oppofite to them; the paffage of the great ditch, or the covert way: But as the ravelin in the front attacked, is either taken, or its defence deftroyed by fhells, and the ricochet batteries, before thefe works are or ought to be attacked, it is evident, that thefe flanks in the front attacked can be of no ufe
at all. Neither can thofe of the ravelins in the fronts, adjacent to that attacked, be of any ufe, fince but a few of the guns placed there will bear upon the attack; and the beliegers have always ricochet batteries to deftroy the defences of thefe works, which fee the attack, as may be feen in the fixth plate of our attack; befides, the fame batteries which batter the breach in the baftions, will fee obliquely thefe flanks; or the moft trouble thefe flanks can caufe, is to oblige the befiegers to raife two batteries of four guns each, in order to deftroy them. I leave it therefore to the judgment of the reader, whether it is worth while to make thefe expenfive works, for fo little a purpofe, or whether fome others might not be made of a much better defence, and of no more expence than thefe.

Notwithftanding that the ravelin in the front attacked at Bergen-op-zoom, had cafemated flanks, yet the French took both baftions and ravelin at the fame time, without given the befieged time to fire a gun from them : this was not fo much owing to the bad conftruction of the works, as to the unfkilfulnefs of the defenders, or to fomething elfe not proper to be made public.

Plate X. The beft way to fecure the ravelins, when the ditches are dry, in my opinion, is to make redoubts in them, with a parapet of about 12 or 15 feet thick only, and about two feet lower than that of the ravelin; that thicknefs is fufficient, fince it can only be feen from the rampart of the ravelin: and if the counterfcarp be cafemated in the manner marked with dotted lines in the plan, Fig. 1 ; and as the plan of the works fhews in the fecond figure; it appears to me a difficult matter for an erremy to get polfeffion of it.

That there may be a fecure communication from the works in the redoubt to thofe in the ravelin, and from thence to the covert-way; traverfes are made in the ditches, marked L, L, in figure 1 . or l, l, in the fection, fig. 3: Thefe cafemats have two entrances, marked
marked E, E, in fig. 2, from the ditch or the caponier ufually made from the oppofite curtain to the gorge of the ravelin; as well as two ftair-cafes, marked D, D, in the fame figure, to mount into the redoubr, as likewife two more in the level ground of the ravelin, not marked here; fo that if the enemy gets poffeffion of one fide of the ravelin, the garrifon may fally our through the other; or when the redoubt is loft as well as the under-ground work on one fide, they may retire through the other.

As the befiegers can no other ways get poffeffion of thefe works, than by mines; openings muft be left in the great gallery A, A, at proper diftances, for countermines to be carried on all the way under the ramparts, and behind the parapets, to refift the enemies miners; as likewife to oppofe every attempt they can make, both above and under-ground, in fuch a manner, as to make it equally hazardous wherever they may choofe to affail the work.

The openings of thefe galleries into the ditches of the ravelin and redoubt mult be well fecured with ftrong doors, full of iron, and behind thefe others with wickets and loop-holes, to retire behind, and to defend the entrance that way, im cafe the enemy fhould attempt it ; as probably he would if they were not well fecured.

The walls of thefe under-ground works need only be about two feet thick near the foundation, with a flope on the outlide, fo as to become a foot and a half near the fpring of the arches; this will be fuficient, becaufe the arches will fecure them againt the preffure of the earth. The piers which feparate the lodgments B, are not fo much made to ftrengthen the wall, as to prevent the arches from being too high, which may be elliptical or parts of circles. Thefe lodgments are 10 feet wide, that is, as much as the great gallery is broad, in order that the arches may join well; and
the bafe of the piers are 8 feet long; fo that the whole breadth of the great gallery and the lodgment together is 18 feet.

The bottom of this gallery mult be about 18 inches above the bottom of the ditch, in order to fecure it from dampnefs, and the piers are 7 feet high, with loop-holes between them, which look into the ditch, to give air to the lodgments: as to the reft, the plans and fection fufficiently fhew our meaning, without being neceffary to enter into any farther explaination: The only thing to be farther obferved, is, that the arches at the entrance E , and over the ftair-cafes D , muft be made conical; as to the others, the reader may eafily perceive how they ought to join.

Mr. Coeborn made füch galleries all round his counterfcarp at Bergen-op-zoom, with loop-holes to fire into the ditch, and at the re-entring angles of the places of arms, lodgments nearly fuch as are marked here, which he called Tambours: and to fecure the entrance above ground, he made a traverfe on each fide of the ftairs, as likewife placed a row of palifades. As thefe lodgements made the beft defence of all his works, in the laft fiege; it is plain that they are very advantageous in a fortrefs; but as to the gallery round the counterfcarp, it was of no other ufe than to lodge the troops fecurely from danger, and to carry from thence galleries for mines under the covert-way and glacis. For which reafon, I would either choofe to make none or one of about 6 or 8 feet wide, which would fufficiently anfwer the intent propofed; and befides, would coft very little more than a fingle wall with counterforts : there might be fome wooden doors placed at proper diftances, with loop holes, fo that if one part was taken by the enemy, the defenders may retire fecurely into the others.

As to the cafemats under the places of arms, they ought by no means to be neglected; and to fecure their entrance above, there fhould fimall redoubts be made
of 12 or 15 feet parapet, and a dry ditch before them; by this means the places of arms may keep off an enemy a long while, and make them pay dear if they take it; as it happened to the French at Bergen-op-zoom.

It may be obferved in general, that a fortrefs without under-ground works can make but a fmall defence now-a-day, againft the great quantity of artillery with which armies are furnifhed at prefent; for the defences above ground are foon deftroyed thereby: therefore an engineer, who undertakes to fortify a place, mult make ufe of all his ikill and knowledge, to conftruct fuch under-ground works, as are beft adapted to the nature of the fituation; and to be as faving as poffible, becaufe thefe kind of works are naturally very expenfive.

S E C T. XII.

Of Casemated Flanes.

Plate XI. $\begin{aligned} & \text { ESS. Coeborn and Vauban were very } \\ & \text { fond of cafemated flanks, the former }\end{aligned}$ made fome in the ravelins at Bergen-op-zoom, and the latter in his tower baftions at N ϵ w Brifack; they have been in great efteem formerly by moft engineers, and a fortrefs without them was not thought to be of any ftrength; but now-a-days they are generally rejected, becaufe experience has hewn, that the finoak becomes foon fo troublefome as nobody can bear it, notwithftanding all the chimnies and air-holes that can be made to prevent it.
As the only objection againtt thefe cafemated flanks, is their fmoaking, engineers have endeavoured to find fome remedy or other for it: but that propofed by Mr. Belidor feems, in my opinion, to be the beft, and is what has been practifed in feveral places, as I an told, and have feen myfelf at Port/mouth, near the fea; i il.
which
which is, to leave them open behind, in the form of piazzas; fo that each gun has an arch over it, as the plan, elevation, and fection, in the eleventh plate fhews by the letter B; and the embrafures are marked by the letter C, which are Mr. Belidor's own draughts; he fuppoles the thicknefs of the front wall to be i 8 teet, and to be of folid mafonry; but as this would be very expenfive, and feems to be ufelefs, I would only make a common wall, and line the embrafures with brick, the reft being filled up with earth in the fame manner as o. ther parapets, as we reprefented by one half of the plan s I faid, that the embrafures fhould be lined with bricks, becaufe they, being fofter than ftone, do not fplinter fo much, and the fhots make only holes, without breaking them fo foon as if they were made of ftone. Above thefe cafemats Mr. Belidor propofes to make another battery, as may be feen in the fection at A, annexed to the outfide elevation: but in low ramparts, fuch as we propofe, it will hardly be poffible, and therefore this upper battery may be lefe out.

This method of making batteries may be of great ufe near the fea or great rivers where large fhips can approach pretty near; for they generally place men on the top maft round, which, being higher than the parapets of low batteries, gaul the gunners in fuch a manner with finall for, that tiey cannot fand to their duty; this is, as I take it, the reafon, that Rips always ger the better of land batteries, and not the fuperiority of guns, as the mariners imagine; whereas, if the batteries were arched in the manner propofed here, it would be quite otherwife.

Another obfervation is to be made, in regard to thefe cafemated batteries, which is, that if the piers were broader near the parapet, than at the other end, and the arches conica!, fo as to open more behind, the fmoak would evaporate in a freer manner, than if they were cylindrical; it is true, that the conftruction of conical arches is more dificult, and not very common, but an engineer
engineer fhould never confult the eafinefs of the performance, but rather the perfection and ufefulnefis of the work.

If this manner of building batteries near the fea, or navigable rivers, fhould be thought too expenfive upon fome occafions, it will be fufficient to make fheds over them with planks or even with canvafs, to prevent the gunners from being feen, when they are upon the battery; for as they are in no danger of fhells, any thing that covers and hides them will anfwer the purpofe; but the cafe is different in flanks, becaufe what the fhot cannot effect, the fhells will do, if no precautions are taken againft them.

As we are treating of flanks, it will be proper to confider the conftruction of the embrafures; whofe common form is, to make them narrow within and wide without ; fo as to enable the guns to fire not only directly, but likewife obliquely : this method has been objected againft by a late authur, faying, that the embrafures are fooner deftroyed this way than if they were narrow without and wide within. But as this author has very little knowledge in gunnery, not withftanding his boafted experience, he did not know that it was impracticable to move the guns fide-ways, from one fide of the embrafure tothe other, as the nature of thefe embrafures require: whereas the firld carriages, having only two wheels, are eafily directed to the right or left, as occafion requires, when the embrafures are narrow within and wide without: This gentleman, fecing loopholes made in this manner at Bergen-op-zoom, imagined, I fuppofe, that cannon were as eafily managed as mufkets, with which he is beft acquainted.

S E C T. XIII.

Of Caponiers.

ACAPONIER is nothing elfe but a paffage made in a diry ditch from one work to another; when they are made from the curtain of the body of the place to the oppofite ravelin, or from the front of a horn or crown-work, they have a parapet on each fide of feven feet high, floping in a glacis on the outfide to the bottom of the ditch; the width within is from 15 to 18 feet, with a banket on each fide: there is a brick wall to fupport the earth within, of a brick and half above, with a lope of a fifth part of the height; this wall reaches only within a foot and a half to the top; to prevent grafing fhot, from driving the fplinters amongft the defenders. Thefe caponiers with two parapets may properly be called double; for there are fome made with one parapet only, in dry ditches of the ravelin, and in that of its redoubt, towards the falient angles, and open towards the body of the place; it is true, that thefe fingle ones are alfo called traverfes, but differ from the traverfes in the covert-way, by their tops floping in a glacis to the bottom of the ditch, whereas the others are made in the form of all other parapets.
Caponiers made from the body of the place to the outworks, are fometimes arched over, with loop-holes to fire into the ditch; they have likewife doors on both fides for a communication from them into the ditch; becaufe the befiegers never fail to deftroy them by fhot and ihells, to render the paffage more dangerous. The fingle ones in the ditch of the ravelin and redoubt are likewife made with arches open towards the place, fuch as we have fpoken of here before; by making them in this manner, the guns which defend the ditch before

before them can no other ways be difmounted than by mines, and when they are fo low as that no mines can be made under them, the enemies paffage over thefe ditches becomes very dangerous.

To make the paffages or communications from one work to another, fo as not be interrupted in time of a fiege, or deftroyed, is the moft difficult part of fortification; for when the retreat out of a work is cut off or made dangerous, the troops in them neither will nor can defend them with fo much courage and bravery as they would do otherwife; and this is the reafon that an enemy always endeavours to deftroy them; and fhould likewife engage engineers to prevent it.

S E C T. XIV.

Of Town-gates and Guard-houses.

THE SE gates are made various ways, fometimes there is only an open paffage cut in the rampart, fhut up by a ftrong wcoden gate, or with a drawbridge; and at others, this paffage is arched all over, with a guard-houfe within, and a draw-bridge and a gate on the outfide; the outfide front is generally ornamented with pilafters and a pediment; the decoration chiefly depends on the tafte the engineer has in architecture.

As we have no author that has wrote on military architecture, nor any of our fortreffes, that I have feen, has any works of this kind worth mentioning; I was obliged to have recourfe to Mr. Belidor's Science des Ingenieurs, which is the only work that treats of thefe things, in the modern tafte; for what is to be found in Dilicbius, Spekel, and other old German authors, is of fo grotefque a tafte, as fcarcely would be followed now-a-days. But as the Frencb are fo magnificent in their military buildings, and the defigns of this author
are chiefly adapted to large fortreffes, which are not in ufe, nor neceffary in this country; we have endeavoured to make ours in fuch a manner as will moft probably be of ufe to our engineers.

Plate XI. Our firtt defign in this plate is quite plain; the width of the paffage is ten feet, and arched above; at the entrance within is a guard-room for the foldiers on one fide, and one for the officers on the orher; each of thefe rooms is twelve feet fquare, having a window in the front, two feet and a half from the ground, three feet wide, and fix high; for it is a general cuftom in all buildings to make the windows on the ground floor twice as high as they are broad; the chiminies are four feet wide, and a foot deep, half of which is taken out of the thicknefs of the wall and the other projects into the room, and is fupported by piers of a foot thick : the doors are three feet wide and feven high.

The walls of the paffage which fupport the arch, are eight feet high, three teet thick near the foundation with a flope on the outfide, fo as to be two feet and a half at the fpring of the arch, which is alfo the thicknefs of the arch itfelf; the walls of the guard room are two feet thick only, and the height of the elevation from the bottom to the roof is fifteen feet.

I have made no counterforts to thefe walls, becaufe the preffure of the earth, together with the ftrength of the wall, will be fufficient to refift the preffure of the arch. This arch, as well as all thofe mentioned hereafter, mult be covered with a bed of cement and dry ftones over them, as has been mentioned before, where we have treated of this fubject.

The outfide of this paffage, that is next to the ditch, is fhut by a ftrong wooden gate covered with iron bars and rails, fo as not to be cut open by any tools; and if it be thought neceffary, a draw-bridge may be made; but as this gate is defigned for a fmall fort only. there is no occafion of making any ornaments that require much

Plan of a Tor un Gate enrich that of the Guard Rooms
-
$-$ pediment will be fufficient.

Plate XII. As the outfides of gates are made various ways, and thofe in ravelins, horn or crown works, are different from thofe of the body of the place, becaufe the paffages are not arched, but always left open above; we have given bere three diferent forts; the firt is quite plain, and may ferve for any outwork: it is compofed of two piers of 24 feet high and 7 broad, with a bafe of two feet high, having a cornith and round balls above; the opening in this and the two following ones, is 10 feet: The firt figure reprefents the elevation, and the fecond the ground plan, with the flopes and projections; there is a draw-bridge to this gate, the feetion of which is reprefented in the elevation.

The third figure reprefents likewife the elevation of a gate in an outwork, made ina more expenfive manner than the former: For the two piers are of hewn ftones, ten feet broad, and 27 high; each of them is ornamented with two pilatters, made according to the Tufcan order; that is, the height is fix times their breadth, the plinth or bafe is half the breadth high; as is likewile the torus or moulding next to it, with the fillet: And if we fuppofe the breadrh of the pilafter to be divided into 24 equal parts; the aftragal and fillet is one and a half of thefe parts, the gorge 4, the next fillet one, the quart de rond 3, the abacus 3 : and the laft fillet one; the entablement is 30 of thete parts: The fourth figure reprefents the ground plan, with the flopes and projections.

The third gate, reprefented by the fifth figure, is defigned for the body of the place, when the paffage is arched; the width of the gate is 10 feet, the height from the bottom to the fpring of the arch is 8 , but may be from 8 to 10 or 12 ; the diftance from one wall to the other 14, and their height including the cornilh 30, and 12 broad; as to the pilatters, pedi-
ment and mouldings, they are the fame as before, and the pediment is from one third to two ninth parts of its bafe high : The pediment ought to be ornamented either with the king's arms, or with military enfigns, and above the gate under the arch, which joins the piers, the arms of the city, or elfe of fome particular perfon of note, who has moftly contributed to the building of the place.

Thefe are only a few fpecimens of gates, to give the young practitioners an idea of thefe kinds of work; the proportion of the parts may vary as well as 'the ornaments; but when there are pilatters or columns, they mutt be conftructed according to the dimenfions of the order, they are made of: We have made ufe of the $T u f$ can order as being the moft fimple; but a young engineer ought not to content himfelf with what has here been given, but apply himfelf to that part of architecture, which is moft ufeful; and if he wants gates of a finer tafte, he may confult Mr. Belidor's Science des Ingenieurs, where he will find a great variety and well-chofen examples.

Gates of large fortreffes require more attention, than thofe of fmall ones; they mult not only be fecured with draw-bridges, but with port-culiffes, harrows, or organs. A port-culifs is a wooden gate well covered with iron, with fharp points, drawn up in a daytime by pullies, and let down at night: A harrow is a gate made of timber, whofe dimenfions are commonly 6 by 4 inches; and 6 inches diftant from each other, well faftened to three or four crofs bars, and fecured with iron: And an organ is a wooden frame, with double bars, through which the timbers fide and fall down: the organ differs from the harrow in that the timbers are not faftened together, and is often preferred to the harrow on that account ; becaufe it is faid, that if an enemy cuts one timber to pieces another may immediately be let down, which cannot be done in the harrow.

The
11

The port-culifs, harrow, and organ, ferve all for the fame purpofe; that is, to ftop an enemy in cafe he has found means to let down the draw-bridge; either the one or the other may be ufed as the engineers think proper, and fometimes two of them, that if one has been cut or burnt, the other may ferve to ftop the enemy.

But to leave nothing which may give a clear idea to beginners, we fhall give fome defigns of thefe gates - when we come to treat of draw-bridges; barriers and other things of that kind.

Plate XIII. As we have given one example onty of a town-gate, which is very plain and fimple, we fhall prefent the reader with another, that may ferve for the body of the place, which, though plain, yèt is, in my opinion, fufficiently ornamented; it is compofed of an arched paflage and two piazzas at the entrance, for the conveniency of foot paffengers, to get by carriages that enter or go out; at the left fide of the entrance is the guard-room for the foldiers, and at the right the room for the officers, and as this laft need not be fo large as the former, a prifon is made, fo as to make both fides of the paffage alike: above thefe rooms, and over the gate, are lodging-rooms, for the town major, and fome other officers.

The paffage is ten feet wide, and the projections to form the cavity for the port-culifs, as well as thofe on both ends, are fix inches; the thicknefs of the walls or piers which fupport the arch is four feet near the foundation reduced to three above near the fpring of the arch, and are 8 feet 6 inches high, and the arch is three feet thick. The length of this paffage, and that of the former depends on the thick nefs of the rampart, for which reafon, they are not determined; the piazzas at the entrance are 9 feet wide, and 12 deep; the piers which fupport the arches 5 feet each way; the guard-room for the foldiers is 20 feet long, and 14 deep, with two windows of 2 and a half or 3 feet 0 . wide,
wide, and as high again; the chimney 4 or 5 , and the door 3 by 7: The officers room is $10 \frac{1}{2}$ feet long, and 14 deep, and the prifon 8 by 14; the walls of thefe rooms are 27 inches or three bricks thick; the wall between the officers room and the prifon is a brick and a half only, and the chimneys 4 feet wide; as to the windows and doors they are the fame as the others.

As this building is too large to make it but one fory high, it was for this reafon we contrived the abovementioned lodging rooms above it : the elevation here is that of the infide or entrance, in which we could not reprefent the chimneys for want of room in the plate : The fifth figure of the laft plate is the elevation of the outfide next to the ditch; to this front is annexed another building, the lower part of which ferves for the bafcul of the draw-bridge, and the upper, to receive the port-culifs: The fection through the length of the paffage fhews partly the nature of the building, whofe breadth is equal to that of the paffage and walls.

As the infide and outfide buildings do not join above, there is a paffage left between them for a free communication upon the rampart, from one fide to the other ; that part of the arch is covered with a bed of cement, and dry ftones over it, with three feet of earth befides. In this fection is alfo feen the fide of the wooden frame $a b$, called $b a f$ cul by the French, which is fixed to the draw-bridge, by one end b, with a chain at each fide, each paffing over two pullies or rollers, turning upon an axis at the other end a, and is a kind of counterpoife to the draw-bridge, to raife and let it down by ; the particulars of which hall be explained hereafter, where we treat of draw-bridges.

There are ftone fleps made at the fides of the infide building to mount upon the rampart, which are not marked here in the plan, but are neceffary, becaufe there is always a fentry placed there at night; befides, when there is an alarm, that the guard may mount quickly, and without any obftruction.

Sect. I5. FORTIFICATION.

 195.At the entrance of a fortrefs, and in the works that cover the gate, fuch ds ravelins, horn or crown-works; are guard-fooms built, for the party without the inner gate, and which are fhut out at night by the drawbridge in the curtain of the body of the place: Thefe buildings cotifift of two rooms, one for the officer, and the ofther for private men, as the plan and elevation in this plate fhews.

The officers room is 12 by 12 feet, and that of the private men 12 by 15 ; and there is a piazza of four arches before it, of 6 feet broad, and as long as the building, for the fentry to walk under in hot and rainy weather; the arches are fupported by five piers or pillars of about 15 inches fquare, and at 6 feet diftant from each other: the wall is two feet thick, the windows 3 wide, and as high again; the chimneys 4 feet wide, and the doors 3 by 7; the elevation is about 16 feet high, including the parapet wall of the roof: The piazza may be made arched or flat roofed, according as it is thought proper by the engineer.

S E C T. XV. Of BRIDGES.

Plate XIV:THE next works in order are the draw-bridges, turning-bridges, ftone or wooden immoveable bridges; as the draw-bridges are immediately joined, and make a part of the town-gates, we fhall enter firft into their conftruction.

They are generally ten feet wide, and twelve long; and are compofed of the trunion-beam a, head-beam b, and fix joilts C, covered with two inch planks, d : The trunion-beam is 12 . inches broad, and 10 thick; the head-beam 10 broad, and 8 thick, and the joits are five by fix, tenanted into the trunion and head-
beam; as thefe planks would foon wear out by the carriages that continually pafs over them, they are covered with iron bars of feven feet long, and about three inches broad, one over each joint, and one upon the middle of the plank; their number is generally 32 ; each of thefe bars is faftened with four cramps, which are not reprefented here; the joifts are likewife faftened underneath to the trunion and head-beams with iron plates each about 3 feet long: the trunions are about fix inches long, three in diameter; faftened to the trunion-beam with two plates, one above and the other below, bolted and rivetted together; the rings or handles of the chains are joined to the head-beam much in the fame manner as the trunions.

Draw-bridges are drawn up and let down, by various contrivances; the molt common way is, by a wooden frame, fuch as is joined to the draw-bridge in the third figure; it may be obferved, that the fide beams GK, HN, go tapering from the trunions E, F, towards the ends K, N, in order to make the frame EGHF, nearly of the fame weight as the draw-bridge: It turns round the trunions E, F, upon iron plates, and the frame HG , moves in a cellar under the gate-way, built for that purpofe; there are two holes, one on each fide, to thruft two long poles, through upon the ends H, G, to prefs them down, and raife the draw-bridge, as likewife two chains are fixed to thefe ends, paffing through the fame holes, with a large ring at the end of each, whereby the bafcul is drawn up, and the draw-bridge let down. This method can only be ufed when the ditch is dry ; for when it is wet, the cellar is apt to fill with water, notwithftanding all the care that can be taken in the building of it; whereby the wood will rot in a fhort time, and the draw-bridge is in danger of not being drawn up when it is required; befices, the making this cellar in a proper manner, fo as to be wa-ter-tight, will be very expenfive.

Sect. 15. FORTIFICATION. 197
Another method of drawing up draw-bridges, and which is often practifed, is to make the bafcul feparate, and not joined to the bridge; fuch as is reprefented by the fecond figure: This frame is fixed by the trunions at L, P, over the gate-way, and two chains, fixed c n the other ends M, Q, go each over two pullies or rather rollers, and are faftened with the other ends to the head B, D, of the draw-bridge $B C$, figure 1 ; fo that when the part $M Q$, is drawn down by chains fattened to them for that purpofe, the draw-bridge raifes. This method has the advantage, that in cafe the enemy fhould Gind means to break the chains which faften the drawbridge to the frame, and thereby make it fall down, the frame M P , will alfo fall down and foop the paffage, and it will not be in his power to raife it: But in cafe any thing fhould happen to the chains, an opening W is left in the middle of the frame, to pais through it, and this opening may be fhut up by a wicket, that is to be lockt upon occafion. We have fuppofed this method to be ufed in the gate-way, reprefented in the thirteenth plate, where the fide view of the beam P Q is feen in the third figure, as well as one of the chains with its rollers.

It mult be obferved, that the head M Q of the frame muft be well loaded with timber, in order to bring the frame nearly in equilibrio with the drawbridge; which is not fo eafily done as one might imagine; and experience has fhewn, that many engineers have mifcarried in their defign; and when this does not happen, the draw-bridge cannot be let down nor drawn up, without very great difficulty.

The only way of doing this, is to have timbers, or any other weights, fixed near the piece $M Q$, fo as to nip off and on, and when both the bride and frame are fixed, to try how much weight w go.

Plate XV. Another way of fixing draw-bridges, is, a bafcul with wings, fuch as is reprefented by the fourth figure, which is fixed over the gate-way, upon bridge is let down, by raifing up the hind part AC to the height of 5 or 6 feet, and then with poles they pufh it up higher, whilft others get upon the bridge to bring it down by their own weight.

When the bridge is down, two bolts fixed to it are pufhed into two ftaples, drove into the fixed bridge; and to guard the fides of the bridge, that nothing may fall over, there are two fltong chains faftened with one end to the wall, and the other to the poft of the immoveable bridge, about four feet above the drawbridge.

It is eafily perceived, tnat the bafcul EC, muft be of fuch a weight as that the bridge may be drawn up with a fmall force; for which reafon, the frame is loaded with timber towards the hind part A C, in the manner reprefented here, in this figure; and it happens fometimes, that they are abliged to faften fhells or any other heavy weight at the ends A, C, to bring the weight of the bafcul nearly equal to that of the draw-bridge.

This method of fixing draw-bridges has been in ufe a long while, and has been pratited more than any other; but when it is ufed in the draw-bridge of the body of the place, the cavities cut into the front of the building, to receive the wings, disfigure the ornaments of that front very much; and another inconveniency it has, is, that every time the bridge is raifed, it requires a great force at firft to move it; this motion accelerates afterwards more and more, till at laft it becomes fo great, that it fhakes the building very much.

Bur when draw-bridges are made to the outworks, or fometimes on the middle of a fixed bridge, this method is always ufed; then the bafcul A D is fupport- which the trunions E, F, turn: It is true, that when the bridge is drawn up, the wings are upright, and exceed the height of the bridge, by about 12 feet, which the befiegers endeavour to break by firing at them, and if they accomplin their defign, the drawbridge falls down, whereby the paffage is left open: But ds no other method has yet been found, that anfwers the purpofe better, this has been ufed to this day.

Mr. Belidor has propofed a new method of moving draw-bridges, in his Science des Ingenieurs, that feens to be preferable to any other hitherto known: which is, inftead of a bafcul, he fixes two cylindrical weights to the chains, which move in a curve on each fide of the paffage, in fuch a manner, that the motion of the bridge is always uniform, provided thefe weights are properly adapted; fo that without fpoiling the front of the building, or fhaking it, two men may move it up and down with the greateft eafe.

Thofe young engineers, who are defirous of knowing how this curve is conftructed, and the weights are applied, may confult that author.

Of fixed or immoveable Bripges.

Fixed or conmon bridges are either built with wood or ftone, or fometimes with both; they are of various lengths, according as the ditch or river is lefs or more broad; they differ likewife in their breadth ; for thofe built over the ditches of a fortrefs are feldom above I4 feet broad, which is fufficient for two carriages to pafs in 'breaft, though they never allow above one at 2 time : but bridges built over large rivers, are from 20 to 36 feet broad: That at Fulbam is 22 feet broad, and Weftrinfer bridge 44, including the foot paffages, and parapet walls.

When the bridge is to be built with ftone, and the ditch is dry, the manner of laying the foundations of O_{4}
the
the piers, is the fame as that of walls; it mult only be obferved, that as the piers fupport a great weight, the bafe of the foundation muft be made large in proportion ; and they are always piled, and have a wooden grate over them, unlefs the bottom be rocky; or otherwife very hard: But when the ditch is wet; two rows of dove-tail piles or planks, are drove round the foundation, at about 6 feet diftanice from it, and 4,5 , or 6 feet from each other; and the interval between thefe two rows of piles is rammed full of clay, fo as to keep the water out; or elfe, two rows of common piles are drove as before, of 3,4, or 5 , feet diftant from each other, and to thefe piles are nailed boards at the infide, and then the interval is filled with rammed clay as before.

This being done, the water is pumped out, and the foundation funk, as before: This method will ferve in moft cafes, excepting in deep water, where the current is very great : 'As to the proportions of the piers', in regard to the width of the arches, and the length of the arch-ftones, they will be given in the latter end of this wotk.
\therefore If the bridge is made of wood, after the ditch has been funk to irs proper depth, rows of piles are drovè a-crofs the length of the bridge, at 10 or 12 feet diftant from one another; the length of thefe rows is equal to the breadth of the bridge; and 4,5 , or 6 , piles in each of them; when they are drove in as far as they will Plate XV. go, the upper part is made level, and bearing beams laid over them, into which they are tenanted; ; over thefe the tie-beams are laid, and then the 'planks. The firf figure reprefents' the elevation of fuch a bridge, the fecond the plan, and the third the fection.

The piles A, are a foot fquare, and the bearing teams B," 14 inches broad, and 15 or 16 high, and the tie-beams $\mathrm{C}, 8$ inches broad, and $\mathbf{I 2}$ high; as to the binding joifts D, they are about 8 inches high,

Sect. I 5. FORTIEICATION.

and 6 broad ; the planks are 4 inches thick; the pofts E about 4 by 6 inches, the top-rails d, about the fame dimenfions; the middle rails e, and ftruts f, are fomewhat lefs than the former.

The bearing-beams B, are ten feet from each other, and fupported by five piles each, and often with more, that is, when the bridge is very high : Thefe piles hould open below, as is reprefented in the fection, figure 3 ; but it is eafier to drive them vertically, as they are generally in that pofition; but fince Mr. Vaulvois's new invented machine, they are as eafily drove obliquely as upright; we choofe this pofition, as making the bridge ftronger and firm : If the foundation is hard and ftony, the piles are fhod with iron: The abuttments of all bridges are always made of ftone, becaufe the firmnefs and ftrength of the bridge depend very much thereon.

When a bridge is made over a navigable river, the middle opening between the piles is made wider than the reft, in order that the boats and fmall craft may pafs through; and to prevent them from running foul on the piles, two or three planks are nailed on them, a little above the furface of the water. When the current is pretty rapid, it is neceffary to add breakers; that is, two rows of piles are drove within five or fix feet of each other, and two piles in the center line between them, at about fix or eight feet diftance from the bridge, fo as to prefent a point on each fide; thefe piles are braced to the others with timbers of about 4 by 5 inches, in two or three places; there are alfo boards nailed to them, in the fame manner as we have mentioned before. This is the way that Fulbam bridge was built; but thofe over the ditches of a fortrefs require no fuch precautions.

As the piles of wooden bridges are liable to rot very foon, in ditches which are fometimes wet, and at others dry ; the beft way to make the work durable, is to lay a foundation of mafonry under them, as high as
the higheft water, upon which ftrong, beams are laid, into which the piles are fixed with tenants; this will make the bridge laft much longer, and thereby the often repairing is avoided, which is not only expenfive, but likewife very inconvenient in ftopping the paffage out and in of the place.

To prevent the carriages from deftroying the planks, fand and gravel is laid over them, of about a foot or more deep; and very often they are paved, efpecially thofe of fortified places; the gravel or pavement is made higher in the middle than at the ends, that the rain water may run off freely, and not rot the wood: This may be feen in the third figure, as likewife in the fecond; where one part reprefenis the gravel or pavement, and the others, the planks and the binding joifts.

Some engineers drive the thickeft part of the piles foremoft, and, on the contrary, others the fmalleft; the reafon the former give for their practice, is, they fay, that timber fhould be ufed in the pofition they grow, whereby they will laft longer ; becaufe the fibres or grain of the wood are as it were adapted by nature to that pofition; whereas the latter affirm, on the con: trary, and I think, with good reafon, that being, placed fo, the wet will enter more eafily in thofe parts, where the branches have been cut off, and of confequence, the wood will fooner decay: but if they are in a contrary pofition, the water will run off, without being able to enter through the pores of the wood.

As our defign is not to give a compleat treatife on bridges, but only fo much as is neceffary for a young engineer to know, and what moft commonly happens in practice; we thall enter no farther into the manner of baking all forts of wood bridges, either with a fingle arch, or with a great many; neither fhall we fay any thing of turning or flying bridges, as being uncommon in this country; we fhall add only fomething relating to bridges of communication from one work to

Gect. 16. FORTIFICA:TON.
another; as relating more immediately to an engineer's bufinefs.

As the befiegers endeavour always to deftroy theife bridges if poffible, either with fire, fhells, or fhot; in order to hinder the troops in the outworks from being relieved or fuccoured by the garrifon, and to obItruct their retiring, when hard preffed: To prevent this, thefe bridges are made as low as is poffible, that is, they are made even with the furface of the water, and fometimes a foot under it; and, to fave expences, piles are drove in the manner mentioned above, oppofite to each other, and covered with a tie-beam; this is repeated at every ten or twelve feet diftance, quire crofs the ditch, like fo many truffes; over which planks are laid, when there is occafion to pals over, and not before; at all other times thefe planks are kept in ftorehoufes.

When there is a fufficient depth of water, a good number of boats are alfo kept to pafs from the currain to the ravelin, in cafe the bridges fhould fail : thofe that go from the ravelins to a counterguard, lunet, tenaillon, or into the covert-way, are always placed near the extremity of the faces, where a part of the parapet it cut off, to pafs by, or elfe a paffage is made through it for that purpofe.

S E C T. XVI.

Of Barriers, Gates, and Portculisbes.

Plate XV. $\mp \mathrm{HE}$ fifth figure in this plate reprefents a barrier-gate, fuch as are made in the covert-way, at the entrance of a town, or in the paffages cut in the places of arms, through the glacis; which is about 14 or 15 feet wide, and 10 feet high : the two fide-pofts are from 10 to 12 inches fquare, the part which is funk into the ground is left rough, and about by an iron hook, whilft the other is faftened with a padlock.

The fourth figure in plate XIV. reprefents a gate made under the covered gate way; each fide turns upon a ftrong iron pivot, ftanding on an iron focket, and are faftened above to the wall, with hooks and hinges, much in the ufual manner of common doors; the outfide is covered with iron bars, in the manner reprefented here, for about eight feet high, and the parts between the bars are drove full of diamond headed nails, to prevent their being cut open : In one of thefe gates, is made a wicket, in order to pals through, when there is any danger of furprize, and in the morning before the party of men, that is fent out to reconnoitre and fee whether any enemy appears, is returned; the upper part of the gate is left plain, without any iron, becaufe shere is no danger of cutting it there.

The fifth figure of this plate reprefents a harrow or port-culifs, which is drawn up by means of two-chains fixed to the upper ends A and B, and the other ends are faftened to a wooden roller, with a handle on each fide, which, when turned round, the chains roll upon it, and lift up the gate, and are faftened above, by two ftrong bolts: the lower crofs bar is covered with an iron flat bar from one end to the other, as likewife the rails or uprights as high as a man can reach, to prevent its being cut open.

Thefe portculiffes are, in my opinion, better than thofe called organs, becaufe if an enemy fhould come fo near as to cut it open, it will not be fo eafily done, if they are well covered with iron; and the men behind them may fire through it with very little danger ; whereas,

Sect. 17: FORTIFICATION., 205

 whereas, the enemy muit be very much expofed to their fire: befides, there might be an opening left above, to throw ftones and blocks of wood upon thofe that dare approach them.
S E C T. XVII.

Of Sentry-Boxes and Necessary-

 Houses.FORMERLY fentry-boxes were made of hewn ftones, and placed on the falient angles of the baftions, ravelins, and other outworks, and fixed to the walls; as they may be feen in moft fortified towns in France, with a flower de luce at the top of them: but it has been found by experience that they ferve as marks for the befiegers to direct their approaches by, for which reafon, they build no more in this manner: the prefent method is to make them of wood, and fo as to be moved from one place to another; and they are moftly placed at prefent upon the middle of the parapets of the faces; and wooden fteps are made to get up, or fopes are fometimes cut into the parapet for that purpofe; by which the enemy has it not in his power to make any advantage of their fight; thefe wooden ones are, befides, lefs expenfive, and anfwer the intent full as well, which ought always to be confidered in every kind of work whatfoever.

Plate XV. The figure given to fentry-boxes is either pentagonal or fquare; we make it a pentagon, as may be feen in the plan, figure 6 , and the elevation, figure 7 , as being more convenient; for by turning the point outwards, the adjacent parts are beiter difcovered from the fides next to that angle : the fides are about four feet long, and fix feet high; the timbers of the bafe ought to project about a foot each way, f, as to have a good bafe to ftand upon, to prevent the
wind from blowing it down; and if this bafe is not fufficient, it may be pinned down by ftakes: In each fide is a hole to look out, of 4 inches broad, and 8 high : as the plan and elevation of this fentry-box is fo plain, there requires no further explanation.

The fentry-boxes placed near the governor's houfe; powder-magazine, houfes, E^{c} c. are made of a fquare form, becaufe the fentry has but one or two places. to obferve: each fide of the bafe is four feet, and the box' fix high, befides the covert : and they are made fo light as to be eafily turned about, or carried from one place to another.
Public boghoufes fall likewife under the care of the engineer: They ought to be placed over rivers, or ftanding water, if it can be done, to prevent, if poffible, the ftench from becoming naufeous; but where this cannot be done, they are placed on the curtain, where a paffage is cut through the parapet, and fupported with braces againft the wall, fo as to hang over the ditch; but care muft be taken, not to place them too near the fally-ports, otherwife, they will make the paffage difagreeable. But, in my opinion, if they were placed at the flope of the rampart, over the common-fewers, it would be much better, becaufe the rain and other waters of the ftreets would carry off all the naftinefs, which makes them fo difagreeable.

S.E C T. XVIII.

Diftribution of HOUSES and STREETS.

TO W N S were formerly built any how, according to the builder's fancy, without the leaft regard to regularity or beauty; but now-a-day, when a place is forcified, which is not occupied by any houfes or other buildinge, great care is taken, to make every

9 conjo cruys
part within as regular as is pofible ; for which reafon, care is taken to make the ground level, at equal diftances from the center of the place, and defcending gradually from that point in an eafy flope towards the ramparts; that the waters in the freet may run into the ditch.

Some German engineers will have the freets to part from the center of the place, and directed to the middle of the baftions and curtains, pretending that thereby, the troops affembled upon the parade, may render themfelves in a fhorter time to any part of the rampart, where their prefence is required; this might be well for the defence; but then all the houfes, and other buildings are made with a bevil, which is fo great an inconveniency, that I believe, this, method will never be put in practice.
It is not only the regularity of the ftreets, which is fufficient, but likewife the rightly placing all the military buildings, fuch as the governor's houfe, guardhoufes, ftore-houfes, and magazines of different kinds: The governar's houfe is aptly placed in the middle of. the fide of the grea: qquare, oppofite to the great church, fo that he may fee the troops, parade, and the garrifon under arms, from his windows, or gallery; there Should likewife be a guard-room in that fquare, from which the fentries placed at the governor's door, and near the magazine are taken. The other guard-rooms are placed near the gates, and fometimes one near the barracks: The ftore houfes and magazines are beft near the ramparts, where they are at hand in cafe of fiege : As to the powder-magazines, they are always placed in the gorges of the battions. In places near the fea, or navigable rivers, the naval fore-houfes mult be as near the harbour, where the fhips lie, as poffible; on the contrary, thofe for land fervice on the oppofite, or land fide; as we have mentioned in the firlt book. of fortification, where we have given the conftruction of thofe places.

When a town is very large, and therefore much room to build upon, it is neceffary, for the publick ufe, to make feveral fquares; but on the contrary, if the place is but little, and no room to fpare, there muft at leaft be one, in the center of the place, whofe bignefs ought to be in proportion to the extent of the fortification, and confequently, to the number of troops required to defend it: For this fquare not only ferves as a market place, but likewife, to draw up the troops and parade on it. Mr. Belidor thinks, that a fortrefs of fix baftions, whofe exterior fide is 180 fathoms, fhould have a fquare, whofe fide is from 40 to 45 fathoms, a place of feven baftions, one whofe fide is from 55 to 60 ; that of 8 baftions, from 70 to 75 ; that of 9 or 10 baftions, from 80 to 85 ; and laftly, that of 11 or 12 baftions, from 90 to 95 fathoms; however, he fays, that the engineer employed in thefe works will be able to judge of the proper bignefs which thefe fquares ought to have.

There is commonly an open fpace left at the entrance or every gate of the town, in order that the guard-houfe, which is made there, may have room before it, to draw up the guard, and, in cafe of danger, to defend the gate and adjacent places: befides, thefe openings have a good appearance, and ferve alfo for the carriages to get out of the way, when any others are coming in.

In regard to the ftreets, the principal ones Thould go from the great or principal fquare in the center, directly to the town-gates; to the ramparts, and to the citadel or harbour, if there is any; in order to be enfiladed by the guns and troops, placed in that \{quare in cafe of any danger or furprize: It muft be obferved, that the crols ftreets are all. parallel to one another, and perpendicular to the former; fo that all the buildings be at right angles to each other.

The principal ftreets are generally 36 feet wide, in order that three carriages may pafs a-breaft at a time,

Scet. 18. FORTIFICATION. $20 g$

time, or if two of them fhould ftop, another may pals by, as likewife room for the foot paffengers; but in regard to the other ftreets, they need not be fo large; if they are from 18 to 24 feet wide, it will be fufficient, becaufe there pafs feldom above one or two carriages at a time.

The diftance between one ftreet to that which is parallel to it, is various; Mr. Vauban made them only the breadth of three houfes, at New Brifac; that is, but one between the two corner houfes; which, in my opinion, is not fufficient, becaufe there is fcarcely any room left behind to build warehoufes, or fhops for workmen, which are abfolutely neceffary; neither is there any room for gardens or apenings for the light and air to pafs freely, both ufeful for the prefervation of the inhabitants.

We fuppofe that each houfe takes up 36 feet in the front, and the interval between the parallel ftreets is equal to the breadth of four houfes, or 144 feet; fo that if the houfes are 36 feet deep, each of them will have an opening behind of the fame extent, excepting the corner houfes; either for a garden, or to build fhops or ftore-houfes: we fuppofe that the fhops to work in are all behind, and in the front only thofe to expofe and fell the goods.
Plate XVI. We made but one fquare in this defign, whofe fides are 75 fathoms, but if it fhould be thought neceffary to make more, one of the fpots occupied by houfes terminated by four ftreets, in the moft convenient place, may be ufed for that purpofe; and it is there where the market for dry goods may be kept, and a town houfe fhould be built.

The governor's houfe is fuppofed to be in the great fquare, marked by the letter \mathbf{B}, and the great church oppofite to it ; marked C : the governor's houfe takes up as much room as three others, and his garden as much as two: fo that the houfe is 108 feet in front, and 3^{6} in depth, and the garden $3^{6 \text { feet broad, and }}$
7^{2} long: and if this is not thought fufficient, the whole opening behind may be taken into his garden.

It is alfo common to build a fountain in the very center of the place, or great fquare, decorated in a neat manner, with four fpouts facing the four principal ftreets: For fince water is the moft neceffary thing wanting in a garrifon, both for men and cattle; there cannot be too much care taken to fupply the place with it: for which reafon, water is brought from fprings, or rivers near hand, by means of pipes, and engines if neceffary, at the fame time that the town is built; there ought befides this, in the center of the place, to be feveral others contrived, in the corner of the ftreets, if the place is large, to fupply every part of the town plentifully.

When an old place is fortified where there are houfes; the ftreets are left as they were; the principal ones are only widened and made ftrait if poffible, either by demolifhing the old houfes, and building new ones, or elfe waiting till the old ones decay, and then obliging the inhabitants to build them on a ftrait line: this is often practifed by the French, when they fortify old towns, as I have feen at Douay, and other places: it is true, that this is againft the laws of England; but any thing that tends to the benefit of the public in general, ought to be preferred before the obitinacy of private people who lofe nothing by it.

In new places builc abroad, in plantations where there is fufficient room, and where the fortification often confifts of the town-wall and ditch only; I would make the intervals between the ftreets greater than what we have reprefented here in this plan, as likewife all the bye ftreets about 30 feet wide: For nothing contributes more to the wholefomnefs of the place, as well as agreeablenefs, than fine large ftreets, and great openings behind the houfes, planted with trees, efpecially in warm climates; befides, all the flops to work in, fhould be built there, and no others ought to be permitted
mitted in the front of the ftreets, than thofe for felling goods, as we have obferved before.

The engineer employed in the building of Halifax, in Nova Scotia, has, in my opinion, committed a great miftake, in building the ftreets fo near to each other as he did; for each houfe is 36 feet in front, and 72 in depth, and no opening is left behind, as I have been informed, by an officer that was there, and employed in the works. This mittake can arife from no other reafon, than the manner of building fortified places in Europe : but the cafe is quite different, becaufe thefe places have a great number of outworks, befides the body of the place; for which reafon, we are obliged to crowd the buildings as much as we can, that there may be room for the inhabitants, befides a large garrifon: whereas abroad, where the fortification is confiderable, the place fhould be made as pleafant and convenient as poffible.

It was faid, the few people that went there, were not fufficient to clear a larger fot of ground; but in anfwer to this, I fay, they need not clear more ground at firft than to build upon; and leave the openings behind for another opportunity, when they have more time; by doing this, the wood left may ferve for tim ber to build out-houfes, and the branches for fewel to burn, when perhaps they muft go far for it, and are expofed to the infults of the Indians at the fame time.

The fore houfes for amunition and artillery being military edifices, and requiring much room, it is not eafy to determine their fituations, becaufe they depend on many circumftances, which cannot fo well be known as upon the fpot; it is neceffary to obferve, that they fhould be feparate from one another, as well as from other buildings, to prevent accidents as much as is poffible, which may happen by fetting the adjacent buildings on fire, either by chance, or by the contrivance of an enemy: When there is a brook or river that pafles through the town, it is requifite, for the good to bring timber and other materials, as well as ftores, by means of water carriages.

We placed the ftore-houfes and magazines here, near the curtains, which have no town gates; fuch as are marked D; becaufe they are not near at hand, to tranfport them upon the rampart, where they are wanted in cafe of a fiege : and the triangular openings formed by the ftreets may ferve them as yards, which fhould be walled in; they are likewife near the barracks, which is another conveniency; for as foldiers are commonly employed in ranging and moving them, they are near at hand upon all occafions.

The barracks are generally placed near the rampart of the curtains, as marked here by the letter G; with pavillions H at the ends, which are defigned for the officers lodgments; this is undoubtedly the propereft place for them; becaufe an open fpace may be left before them to draw up and exercife the troops; the detachmenes in time of war may be more privately made for any enterprize that might be thought neceffary, which could not fo well be done in any other place; and the troops are quite feparated from the inhabitants, with whom they do not always agree.

As the tap-houfes and bake-houfes, for ammunitionbread, are neceffary for the fubfiftance of the garrifon, they ought to be built near the barracks, and fo as to have a guard-room not far from them, in order to prevent any riotous proceedings, that might happen; and as to the hofpital, it is almoft needlefs to mention, that it fhould be placed in fome bye place or other, fo as to be feparate from the inhabitants, and noife of the workmen; efpecially near a brook or river, in cafe there is any that paffes through the town.

This is nearly all that can be faid in regard to this fubject, when the place is large; but in fmall forts there requires not fo many ftore-houfes, which however are always placed near the rampart. In fuch places, where

where there are harbours or citadels, regard muft be had to them in the placing thefe buildings; but the fubject being fo plain and eafy, it requires no farther explanation; fince a little practice and common fenfe will fuggeft the neceffity of placing thefe buildings in the moft convenient manner : but the execution of thefe, and all other military buildings, requires much more capacity and knowledge, in order to make them folid, and at the fame time convenient; which we fhall difcufs more particularly, by treating of them each feparately.

We have omitted feveral other things too trifing to be mentioned, which the reader will partly fee in the fixteenth plate, which befides will ferve as a further illuftration to what has been mentioned; and what remains to be done, we muft leave the fagacious reader to find out himfelf, the fubject being too capious ta treat particularly of all the minute parts.

S E C T. XIX.

Of Powder-magazines.

FORMERLY powder-magazines were made in a quite different manner from thofe at prefent; they placed the powder in towers that had been built in the town-walls, by which they became liable to many accidents; for when the powder happened to be fet on fire, either by chance or by fome concerted fcheme of the enemy with the inhabitants, it opened the town, and made a breach for the enemy to enter, as it happened at Aire, according to Mr. Belidor, when that place belonged to the Spaniards: The French, who then befieged it, having got intelligence from fome inhabitant, found means to fet the powder on fire, that was placed in one of the baftions; which had fo great an effect, as to make a large breach, and as foon as the befiegers had prepared
for an affault, the garrifon furrendered, whereas, without this accident, they might have defended themfelves much longer.

Finding by experience, that the building magazines in the rampart was of dangerous confequence, they are now placed in different parts of the town, and made of various figures; but it was a great while before the right one was found: the mott common had feveral pillars in the middle to fupport the arches; but to bring thefe double arches under the fame roof, the top mult be loaded with fo great a quantity of mafonry as almoft burft the arches: finding this method inconvenient, it was agreed to make them of one fingle arch, as being much better than the former: the form of this arch was of the Gotbic kind; and in order to get more room for lodging the pousder, a floor was made at the fpring of it.

Plate XVII. But Mr. Vauban having obferved, in feveral fieges, that thefe kind of arches were too weak, and that the floor loaded the piers very much to na purpore, fince prudence requires not to lodge fo much powder in the fame place; and being better to divide it into feveral parts, he abfolutely: rejected all the different methods till then followed, and propofed a new one, much more perfect; and which is that reprefented by the firt and fecond figures, and is the only one hitherto executed with fuccefs; though fomething may be changed for the better, as we fhall hew hereafter.

If we may believe what has been faid on that fubject, we are told, that there were thrown upwards of 80 . fhells upon a magazine of this fort, at Landaw, with out doing the leaft damage to the vault : the fame thing is reported to have happened at Ath, and in feveral other places. Mr. Demus, director of fortification, and a perfon of good reputation, affures, that in the fiege of Tournay, by the duke of Malborough, where he ferved, there were thrown upwards of 45000 fhells,
ints the citadel, and the greateft part of them fell upon two powder-magazines of this fort, and yet neither of them was damaged; whereas there were fome built with Gotbic arches, that were deftroyed by three or four fhells that fell upon them, notwithftanding that they had been covered with five or fix feet of earth, fome time berore the fiege began.

The dimenfions of Mr. Vauban's magazines are as follow; the plan is 60 feet long, clear within, and 25 broad; the foundations are 9 or 10 feet thick under the long fides which fupport the arch; and thefe fides he made 8 or 9 feet thick, according as the mafonry was good or indifferent, and 8 feet high from the foundation to the fpring of the arch; fo that, making the floor about two feet from the ground to keep it free from all dampnefs, there remained 6 feet for the height of the ftory.

The thinneft part or hanches of the arch is three feet thick, and the arch made of four leffer ones, one over the other, and the outfide of the whole terminated in a flope to form the roof; from the highelt part of the arch to the ridges is 8 feet, which makes the angle. fomewhat greater than 90 degrees; the two wings, or gable ends, are four feet thick, raifed fomewhat higher than the roof, as is cuftomary in other buildings; as to their foundations they are 5 feet thick, and as deep as the nature of the ground reqnired.
The piers or lọng fides are fupported by four counterforts, each of fix feet broad, and 4 feet long, and their interval 12 feet; between the intervals of the counterforts, are air holes, in order to keep the magazine dry and free from dampnefs; the dices of thefe air-holes are commonly a foot and a half every way, and the vacant fpace round them are three inches, made fo as the in and outfides be in the fame direction, as may be feen by the plan; the dices ferve to prevent an enemy from throwing fire in, to burn the magazine, and for a further precaution, it is neceffary to ftop P. 4 thete
thefe air-holes with feveral iron plates, that have fmall holes in them like a Ikimmer, otherwife fire might be tied to the tail of a fmall animal, and fo drive it in that way; this would be no hard matter to do, fince where this precaution has been neglected, egg-fhells have been found within, that have been carried there by weafles.

To keep the floor from dampnefs, beams are laid long-ways, and to prevent thefe beams from being foon rotten, large ftones are laid under them; thefe beams are 8 or 9 inches fquare, or rather to high and 8 broad, which is better, and 18 inches diftant from each other; their interval is filled with dry fea coals, or, chips of dry fones; then over thefe beams are others laid crofs ways, of 4 inches broad, and 5 high, which are covered with two inch planks.

To give light to the magazine, a window is made in each wing, which are fhut up by two Chutters ofiz or 3 inches thick, one within and the other without; that which is on the outfide is covered with an iron plate, and is faftened with bolts, as well as that on the infide. Thefe windows are made very high, for fear of accidents, and are opened by means of a ladder, to give air to the magazine in fine dry weather.

There is likewife a double door made of ftrong planks, the one opens on the outfide, and the orher within; the outfide one is alfo covered with an iron plate, and both are locked by a ftrong double lock; the ftore-keeper has the key of the outfide, and the governor that of the infide: the door ought to face the fouth nearly if poffible; in order to render the magazine as light as can be, and that the wind blowing in may be dry and warm. Sometimes a wall of 10 tete high is built round the magazine about 12 diftant from ir, to prevent any thing from approaching it without being feen.

Here we take not fo much precautions, for I never did fee any with double doors, or fhutters, and they
are built in fo night a manner, that it would be an eafy matter to deftroy them. I have feen a project for mending a powder-magazine at Minorca; there were to be no lefs than four doors, and as many windows as are cotmmonly made in a dwelling houfe: there was to be likewife a brick floor,' and to render the work compleat, crofs-walls were to be built within, at every twelve feet diftant : and yet this project was contrived by a perfon of the greateft repute for his kill in engineering; and would, in all probability, have been executed, had I not prevailed with the furveyor general at that time to lay it afide.

Such a magazine as this will hold about 200,000 pounds of powder, when the barrels are fix above one another, which however is not doné, byt in cafe of neceffity, becaufe when they lie fo much on each other, it, is very troublefome to remove them, and change their pofition, which ought to be done once a year at leaft; otherwife the falt petre, being the heavieft ingredient, will defcend into the lower part of the barrel, and the powder above will lofe much of its goodnefs; but to prevent the barrels from rolling, when fome are taken off, two wooden pofts are erected, of about 4 or 5 inches fquare, between every 10 or 12 barrels, by this means they may be piled up as high as you pleafe, or taken off without any danger.

Mr. Belidor would have brick walls made under the floor, inftead of beams, and a double floor laid on the crofs-beams; which does not appear to me to be fo well as the manner propofed here ; the reader is, however, at liberty to chufe that method he likes beft.

Inftead of making the fide walls 8 feet thick, as Mr. Vauban does, we have made ours here but feven, and turned the counterforts contrary to his pofition; that is, inttead of being 6 feet broad, and 4 long, ours are 6 feet long, and 4 broad, which ftrengthen the walls very much; as his were only 12 feet diftant from each other, ours become 14 feet afunder, fuppofing the
extreme ones to be within a foot from the infide of the wings produced.

It is likewife to be oblerved, that inftead of making four arches one over another, each of them the length of a brick thick, in the manner of Mr. Vauban, we make but one continued arch three feet thick, which makes it much ftronger, as it eafily might be proved by what has been demonftrated in the fecond fection, The reafon of making our fide walls feven feet thick only, inftead of eight, according to Mr. Vauban, is becaufe we found, by the rules of mechanics, and the. fricteft computation, but 7 feet and two inches, when they are four feet long, and fix broad: but by making them fix feet long, and four broad, the walls are capa: ble of a greater refiftance than his, and they being found ftrong enough by a long courfe of experience, there cannot be the lealt doubt, but that ours will be fufficiently ftrong.

In the theory of arches we made no allowance for friction, but confider the ftones only according to their weight, whereas, in that of the walls which fupport earth, we made an allowance of one third of the weight, for the friction, and yet our walls are as ftrong as thofe built by Mr. Vauban; it may feem contradictory to make no allowance here; but if it be confidered, that the fones never clofe and bed fo together as to make one continued folid, as the theory fuppofes; but on the contrary, lay often hollow, and the void fpaces are filled up with bad mortar, it is a great while before thefe piers or walls are dry, and become capable of as much refiftance as is required: befides, an allowance muft be made to refift the force of the fhells thrown upon them, as has been obferved in the fecond fection.

In order to fucceed in thefe kind of buildings, it is, highly requifite that the engineer fhould watch the workmen continually, in order to make the wall as folid and compact as poflible, that the fones or bricks
bed well, and no holes big enough to hold a ftone or brick to be filled with mortar: And lafly, to make ufe of the beft materials to be had thereabouts; and when the arch is built, the centers fhould be left to fupport them, at leaft for fix months, that is, till the work is fettled and dry, otherwife the arch is in danger of tumbling down, or elfe the walls mult be made ftronger than, they need to be.

The third and fourth figures reprefent the plan and fection of a large magazine, for ftowing a great quantity in the fame place: the piers or fide-walls, which fupport the arch, are here io feet thick, 72 feet long, and 25 high, from the foundation to the fpring of the arch; the middle wall, which fupports the two fmall arches of the ground floor, is 8 feet high, and 18 inches thick, as are likewife the arches; the thicknefs of the great arch is 3 feet 6 inches, and the counterforts, as well as the air-holes, are the fame as in the former.

Such large magazines as this, are by no means to be built in fortified towns, becaufe if any accident fhould happen, all the powder would be loft at once, whereby the place would be obliged to capitulate; but in fome inland part of the country near the capital, where no enemy is expected, they might be ufed, as for a general magazine, and that from thenc̣e the powder might be diftributed to the feveral places where it may be wanted: yet, in my opinion, it would be better to make two fmall ones, and place them at a proper diftance, that if one fhould be blown up by accident, the other might be fafe.

The ridge of the roof makes a right angle in both thefe magazines, and it is neceffary to obferve, that as the foundations grow deeper, fo they pught to increafe in width; this is obvipus from the common practice of making walls thicker as they increafe in height; but no certain rule has hitherto been given, to know how much that increafe is to be; fuppofing the foundation to project inwards, by fix inches only, which
which feems to be fufficient, fince the walls never fall that way: then I would allow fix inches for every foot and a half depth on the outfide, fo that if the foundation be fix feet deep, its breadth muft be increafed by two feet divided into four fteps; by this means you may know at all times how broad a foundation muft be, when its depth is known. Although this rule is not founded upon a demonftration, yet, by the obfervations of common practice, it appears to be fufficiently accurate upon all occafions.

S E C T. XX.

Of Barracks, Hospitals, and Store-

 HOUSES.Plate XVIII. RARRACKS are built nowda-day in all fortified places, to keep up the difcipline, and good order in the garrifon: they have been found fo ufeful, that no place is built withour them; and experience fhews, that thofe garrifons which have them, are much more quiet, on account of the conveniency which non-commiffioned officers have to vifit the quarters every evening, and to fee the foldiers Shut up their quarters, which cannot be done when they are lodged amongft the inhabitants, where they have the liberty of going out and in whenever they pleafe; befides, when the governor has a mind to make a detachment, or fend out a party, he cannot do it, without the knowledge of the whole town : If any alarm happens, the garrifon cannot be affembled without great trouble and lofs of time; whereas, when there are barracks, every thing neceffary for the good of the fervice may be done with eafe.

Barracks are built different ways, according to their different fituations. When there is fufficient room to make a large fquare, furrounded with buildings, they
$\frac{1}{6}$

1
-

1
are very convenient, becaufe the foldiers are eafily confined to their quarters, and the rooms being contiguous, any order may be executed with privacy and expedition, and the foldiers have not the leaft connexion with the inhabitants of the place, which prevents quarrels and riots.

This difpofition of the barracks is efpecially convenient for the horfe añd dragroons, becaufe they want a convenient place for the daily mounting their horfes; and in this cafe, the lodging-rooms are built over the ftables, with a gallery ferving for a communication from one room to another, quite round the building, with faircafes in the corners, and fometimes another in the middle of each front; but care muft be taken, to make the firft row of lodging rooms pretty high, or elfe they will be darkened by the gallery above them.

When the barracks are built near the ramparts of the curtains, as Mr. Vauban has done in almoft every place he fortified, they are compofed of a large pile of building in a ftrait line, for lodging the foldiers, with pavillions at the extremities for the officers: thefe barracks are generally two or three ftories high, befides the ground floor.

Between every two rooms in the firnt, is an entry of 8 feet wide, with doors to the four contiguous rooms, and a ftair-cafe leading to the upper flories; as to the bignefs of the rooms, Mr. Vauban made them 22 feet long, and 18 broad, in order to hold four beds each; I have feen fome large enough to hold fix beds, and with two chimneys in them; there were three ment to each bed, which is the cuftom in all the Frencb garrifons, becaufe it is fuppofed, that one of the three is always upon duty, fo that there is never bat two in one bed at a time.

Our barracks here, at Woolzich, are but 16 feet each way, with three beds in each room, to hold fix foldiers only, which is not fufficient, becaufe it requires too large a building to quarter a whole regiment in them.
them. The plan and elevation in the eighth plate is much in the fame manner, only we fuppofe four beds in a room, which they may hold; the rooms are i6 feet each way, though I think that if they were 20 feet long, and 18 broad, it would be much better; the ground fory is if feet high, the next to it 10 , and the laft but 8 . .

The outfide wall is two feet thick, and the partitioh or crofs wall a brick and a half; for if thefe latter are thinner, every thing that is done, and faid, will be heard by thofe in the adjoining rooms: the outward doors are 3 feet and a half wide, and 7 high, the inner ones 3 feet wide, and 6 and a half high'; the windows are 3 fett wide, and 6 high in the ground floor, the upper ones have the fame breadth, but their height diminifhes in proportion to the height of the fory; that is, the fecond row is 5 feet high, and the laft but 4 : the chimneys are 4 feet wide, and 18 inches deep, going parily into the wall, and projecting partly in the rooms.

The corner houfes, being defigned for officers lodgings, have each an entry of 6 feet wide, with a ftaircafe and a clofet of 5 by 6 feet at the further end: under the ftair-cafe is another going down into the kitcken and cellars, which we fuppofe are built under the officers houfes; but in regard to the foldiers barracks, there is no occation to make either kitchen or cellar, as they have done at Woolwich.

The third figure in this plate reprefents the fection of the elevation, where it may be feen that the ftair-cafe goes ftrait up from one floor to the other; but if this is found inconvenient, it may turn at half-way, with a landing-place: the roof is divided into two ridges, becaufe it is both cuftomary, and more convenient, than if it was continued, which would make it too high, and, requiring longer timbers, makes it more expenfive.

Sometimes

Sometimes there are piazzas built before the barracks, as thofe at Dublin, if I am rightly informed, which are very convenient; for when the troops are drawn up, and a fhower-of rain comes, they may fhelter themfelves under it, to keep their arms dry, and wnen the companies are to be examined, in regard to their cloathes or arms, it may be done there at any time or feafon.

In all garrifons it is neceffary to build hofpitals for the fick and wounded; its bignefs ought to be regulated according to the number of troops required to defend it in time of a fiege, and it has been found by expérience, that out of 25 men , there is generally one fick; yet it ought to be obferved, that in fortreffes built in low and marfhy ground, there are more people nick, than in places ftanding on a high ground in good air.

Knowing nearly the number of fick people, the number of beds wanted will alfo be known, and confequently, the bignefs of the building, which confifts of a long room to hold four rows of beds, and another above it; thefe rooms the French make 42 feet wide, and therefore if but two rows of beds be required, 20 or 21 feet will do ; each bed ought to be 4 feet wide, and 6.5 feet long, and the diftance from one bed to the next can be no lefs than 4 feet, fo that as many 8 feet as there are beds, will be the length of the room which is to hold but two rows of beds; or half that length, if it is to hold four rows.

Befides thefe rooms, there muft likewife be lodging rooths for a doctor, furgeon, their mates and attendants, for the nurfes and fervants; a kitchen and laurdry, as well as a yard to dry their linen: In fhort, the building is to contain every thing neceffary, both for lodging and conveniency of the hofpital.

In regard to their fituation, we have fpoke of it already, but I muft add, that if- it is - not poffible to place it near a river, a canal might be cut to it, becaufe water

224

water is abfolutely neceffary, for cleaning the apparel of the fick and wounded; for neatnefs in general is abfolutely neceffary in fuch places, where the fmell of fo manyffores, wounds, and other ficknefs, muftothorwife be very offenfive.

We have not given any plans of hofpitals, becaufe they may be conftructed various ways, according to their fituations and bignefs, which an engineer upon the fpot will be acquainted with, and from thence regulate his draughts accordingly, and it would not be amifs to confult the doctor and furgeon about the feveral conveniencies to be made; this, and his own knowledge in building, will be fufficient to perform fuch a work in the beft manner.

I had forgot that there is often a chapel built at one end of the great room, to perform divine fervice, and when there are two rooms above one another, the upper one has a gallery looking into it, for the fick to fit in without being obliged to come down ftairs.

The laft public buildings we have to treat of, are the ftore-houfes for all kinds of ammunitions, great and fmall guns, and, if the place is fituated near the fea or a navigable river, for cables, anchors, timber, and other neceffaries, to repair and furnith ihips.

In a fmall fortrefs, fuch as a citadel or fort, a ftorehoufe of a moderate fize will be fufficient to hold the ammunition, and other neceffaries for the defence of the place; whereas in a large town lying near the border of a ftate, it is neceffary to have a fpacious one for the artillery, in fuch a manner as to contain every thing wanted in a field train.

A ftore-houfe of this fort ought to be built near a river that may carry fmall craft at leaft, if poffible; in this cafe a bafon ought to be made, to load or unload feveral boats at a time; fuch a fituation is of great importance, in regard to the faving expences; for it requires a great deal to tranfport a train of artillery with

1
afl its appurtenances by land to any confiderable diftance. And as there is feldom any fortrefs built bue hear a great river or the fea, it will always be in the power of the engineer to find a proper place for building the fore-houfe; and what nature wants may be fupplied by art.
The ground floor of a ftore-houfe ought to confift in a fhed to place guns and their carriages, tumbrels, ammunition, waggons, mortars, and their beds; in Thort, all the other neceffaries which are too heavy to be carried and depofited above : there muft likewife be forges for fmiths, places for carpenters to work in, to hold iron and wood, and wheelwrights fhops, and every thing of this fort.

The firft floor ought to contain an armoüry, places to hold all kinds of fmall irons, others for cordage, pontoons, and every thing neceffary, that is light and eafily tranfported. An engineer, who is not perfectly acquainted with every part belonging to the artillery, will not be able to form a right notion of a flore-houfe: there is fuch a connextion between the bufinefs of an engineer and that of an artillery officer, that neither the one nor the other can be mafter of his bulinefs, withous being tolerably well acquainted with that of the other: I am fenfible, that this will be ridiculed by many practitioners, but I leave the unbiaffed intelligent reader to judge, whether this notion is right or not: As my intent in writing this work is to inftruct young engineers, it is no matter what thofe fay, who think experience is fufficient to fhelter their ignorance.
Plate XIX. To give an idea of thefe kind of works; we have reprefented the plan of the fourth part of a reftangular fhed, in this plate, with the elevation of one of the infides, executed at Woolwich; the width within is 33 feet, the length 282 one way, and 156 the other; the wall is 18 inches thick, having pilafters 15 feet diffance from each other, they are two feet bioad, and project the wall by 9 inches; the elevation
is 16 feet high at a medium, for the building fands an a fmall defcent: the gate-ways, which are three in each front, and one in the other fides, are 10 feet wide; the arches of the infide walls are 8, as well as the height of the piers from the bottom to the fpring.

Plate XX. Here are reprefented the elevations of the front and outfide, together with a fection through the middle of the longeft fide, wherein the fection of the roof is reprefented: As thefe figures are drawn on the fame fale as thofe in the former plate, and there is nothing material in them,' but what the reader may underftand, we fhall not enlarge any further on fo eafy a fubject.

The ufe of this building is to put under cover the carriages of guns, both for land and fea fervice, mor-tar-beds, pontoon carriages, bread-waggons, ammuni-tion-carts'; in fhort, all kind of carriages, that are ufed in artillery: and as wood lafts much longer in a place where there paffes a free air, than if confined, it was for this reafon, that the infide walls have been built with arches, in the manner reprefented in the preceding figures.

Brfides the great ftcre-houfes in large fortreffes, feveral fmall ones are built in different places, not far from the ramparts, in order to lodge ammunition and other things neceffary in a fiege, fo as to be near at hand; they are fupplied from the great ones, when there is any occafion for it : but as their conftruction does not differ effentially from the former, excepting in their bignefs, it would be needlefs to take any further notice of them.

The ftore-houfes built in a maritime town, are not only to have room for artillery and ammunition, but likewife for cables, ropes, mafts, anchors, and every thing elfe, neceffary in the fitting or repairing of hips; and this in proportion to the bignefs of the harbour or number of ihips that generally refort there; thefe places mould have two fories, the lower for heavg things, and

nd the upper for thofe goods that are light and manageable; their fituation ought always to be near the harbour or quay, that the fhips may come near them, whereby a great deal of labour may be laved, in the fetching and carrying things from them to the fhips.

S E C T. XXI.

Of framing Timbers for Partitions, - Floors and Roofs.

AS an engineer ought not to be ignorant of any thing relating to common architecture, we think it will not altogether be unneceffary, to thew here the dffferent manners of framing timbers on moft occafions, this being a branch of his bufinefs, efpecially as the carpenters follow no other rules than thofe they learn from practice, which are often defective, as will appear hereafter.

Plate XXI. Here are five examples of different partition-frames; the firft, fecond, and fourth, are given by Mr. Smith; the third, and fifth, by Mr. Price; thefe are the only authors that wrote particularly upon this fubject. The firft example is in the common way, wherein it has been obferved by an artift, that there are more mortifes and tenons than need to be; for if the braces were let into the principal pofts, fo as to butt againtt fhoulders of about half an inch deep, and nailed in, they would do the fame office in a better manner than being tenoned in , as here reprefented, and would be done in lefs than haif the time : and as the quarters are only to fuftain the laths and plafter, becaufe the weight of the roof is fupported by the pofts and plates, they have no need of being framed into the upper and under plates, which only take up much time, and will not laft longer than when they
are cut and nailed in only, and which is done in a very little time with little expence.

The example in the fecond figure reprefents the partition of a warehoufe, or of any other large building, where the grinders, or fome other weights are to relt on the king or principal poft, E; but it may be obferved, that if this wall was to fupport great weights in two places, it fhould be inverted, fo as the weights may reft upon the pofts A, A: for in the firft cafe, the two ftruts adjoining to the poft E , will increafe its ftrength very much, and in the later, the ftruts adjoining to the pofts A, A, will, by the fame reafon, increafe their ftrength; but where the weight bears equally on the upper plate, this manner of ftrutting is needlefs. The author is alfo juftly blamed for making the joggles in the king-pofts $\mathrm{A}, \mathrm{E}, \mathrm{A}$, as being expenfive in the workmanhip, and in the wafte of timber; it requires likewife much time in the framing of it; and after all, ferves to no other purpofe than the firft example, which is full as ftrong, and much cheapcr.

The example reprefented by the fourth figure is propofed to raife the height of two ftories, the lower of 13 feet, and the upper of 12 ; or otherwife in one height only, as the fide of an outhoufe, hall, or faloon; now it is to be obferved, that as joifts are fuppofed to lie on the middle plate in the firft cafe, which is framed into the king-pofts E E, and the outward principal pofts; the weight at each end muft depend on the ftrength of the tenons, excepting fuch help as is given to it by the under quarters; the braces are therefore placed exactly the wrong way, becaufe now they fupport the parts near the middle pofts which do not want it, whereas if their ends were turned the contrary way, they" would affift the ends, as they fhould do, as being the weakeft part, and the whole would be equally ftrong every where, and they would at the fame time
perform

As to the joggles at E, E, in the king-poft, they are juftly condemned by workmen here as well as in the firft example, for the wafte of timber, and the lofs of time in framing; and it is thought, that if thofe pofts were made a fmall matter more in breadth, and their ftruts let into them with a fmall fhoulder, commanly called by workmen, bird's mouth, they would be as ftrong and fecure as they can be done this way.

The next example in hand, is that reprefented by the third figure given by Mr. Price, which he fuppofes to be a partition between two rooms, wherein doors, A, A, are required next to the ends, and therefore has placed a king-poof in the middle, and prick-polts between it and the doors; it is here to be obferved, that the middle plate, alfo called intertie, is halved, not only in the prick-pofts, but even into the king-poft alfo, which is a great weakening to it, and therefore abfurd; nor indeed is there any occafion for an intertie at all, if the height is intended for one flory only; but fuppofe there was one required, would not its being nighly tenoned into the king poft have been a lefs weakening to it, and have given it a ftrong bearing, by turning the lower Atruts the contrary way, to that they are here? It is true, that it is a common practice to halve timbers together, but it hould never be done but with very great judgment, and always avoided in braces and ftruts.

The fifth figure is another example given by Mr. Price, for a partition, wherein three doors are required, one at each end, and one in the middle; the two kingpofts and the intertie are again halved into each other ; and therefore the fame fault may be found here as in the former : the joggles in the king pofts and prickpoft are likewife needlefs; befides, the braces feem to have no other meaning here than to thorten the quarters which crofs them, and fo are only nailed upon Q3 them without tenons or mortifes.

In all Mr. Price's examples of partition-walls, he ties the lower end of the king-pofts to the lower plate with an iron band, but for what reafon, is not eafy to be known, fince, as far as I can judge, they feem to be entirely ufelefs, and therefore fhould never be ufed.

Many examples of partition-walls are given by authors, of different conftrustions, and for different ufes ; but the whole art of framing this fort of work confifts in difpofing the different parts in fuch a manner as to make the whole work equally ftrong; in ufing no more timber than is neceflary, and to join them fo as that the work may be done in the fhorteft time poffible, and yet be ftrorg and durable, which cannot be done without a competent knowledge of the rules deduced from mechanical principles, and a good deal of practice, which feldom both meet together; and for that reafon, the art of building has rectived fo little improvement in latter times.

S E C T. XXII.

Of FLOORING.

Plate XXII. B EFORE a flooring is begun, there building, whereby a judgment may be formed where to place the girders in the moft fubftantial manner; and indeed, this hould be done before the brick-work is raifed high enough to receive them, that not only the lintels may be well placed over the doors and windows; which ought never be lefs than 5 by 7 inches; but in thofe places where the ends of the girders "are to yeft, if the lintels or bearing pieces are" made equal int length to the diftance that is contained between girder and yirder, they will communicate the weight equally

1

$$
\nabla
$$

-

Digitized by GOOg le.

Sect. 22. FORTIFICATION.
on the whole wall, and which is much better than when the bearing is on the part juft underneath them only, which is the cafe when the lintels are made fhorter; befides, when lintels are fo laid, and are 5,6 , or 7 inches in thicknefs, in proportion to that of the wall, they are a very great frengtiening, and tie thofe parts very firmly together: wherefore they are alfo called bond timbers; but to prevent miftakes, it mult be obferved, that bond timbers are properly thofe laid in walls where no girders are, as in end and crofs-walls, and which are laid throughout at every 6 or η feet in height, and being doverailed or cogged together at every outward angle of the building, as marked in figure 2, and at every party-wall, as in figure 3, or 4, will moft firmly bind the whole together, fo thar, if even the foundation be bad, they oblige the whole building to fettle together, prevent cracks and fratures, which unavoidably would happen, if they were neglected:' It may be obferved, that thefe three different ways of joining timbers are ufed, but the fingle dovetail, as is marked in the fourth figure, is preferabie to the other two, as being more fimple, and yet tie the timbers full as well as the others.

The proper places for girders having been determined, it mult be obferved, to lay them fo as the boards lay all one way throughout the middle of the building, fo that the whole may be feen one way; for if the joints of the floor of one room are not parallel to thofe of another, it would produce a very ill effect.

The fituation of the girders being determined in the plan, we are thereby enabled to find their length, their number, and their diftance, which fhould never exceed 12 feet in any building whatfoever; nor hould joifts exceed that length: It is alfo" obferved in placing of girders, always to lay them the Thorteft way, and that their ends have at leaft 14 inches bearing in the wall, excepting thofe in very fmall buildings, where the walls
are of thin dimenfions, then their bearing may be reduced to 10 inches.

Nothing being a greater enemy to timber than lime, it is a very good method to lay the ends of girders, lintels, and other bond-timbers in loam; and fir is belt preferved by anointing it over with melted pitch and greafe, of which the laft mult be one fifth part, and the other four fifths: If this precaution is negiected, which is commonly the cafe, the building will never laft fo Jong as it would otherwife do.

As the proper fcantlings of girders and other timbers have been treated of in the third fection, where we have given tables of their dimenfions in refpect to their length, we fhall no farther enlarge upon it here; and having fufficiently explained the fituation and manner of laying girders, we fhall now proceed to the joifts, which are of various kinds, as common-joifts, triming-joifs, bind-ing-joifts, bridging-joifts, and cieling-joifts.

Common joil's are thofe which are framed fulh with the upper furtace of the girders, and which fometimes are all of equal depth, but lefs than that of the girders, whertby the girders become lower than the cieling; but the moft genteel way is to have every third or fourth joitt equal in depth with the girder, whilft the other intermediate joifts are of lefs depth, and between. thofe deep joifts, fix fmall ones to carry the cieling, whereby the under furface of the girders will be concealed, which otherwife have an ill effect.

Triming-joifts are fuch as are framed into two other joint, for o:her joifts to be framed into them, which are againft a chimney, or to make the opening for a ftair-cafe, fuch as are marked by the letter a : as thefe joifts are weakened by receiving many mortifes, and having to fupport the weights of feveral joilts which bear upon them; they are therefore to be made of Jarger feantlings than the common-joifts.

Binding joilts are thofe on which bridging joifts are taid, and in which the cieling joitts are framed; thefe joilts
joifts are framed flufh with the under furface of the girders, and about 3 or 4 inches lower than the upper furface; that the cieling-joifts may be flufh underneath with them as well as with the girders: their diftance is from 3 to 10 feet, and their thicknefs in proportion to the length of their bearing, as has beenfhewn in the third fection.

The figures 8,9 , and 10 , reprefent the manner in which their tenons and mortifes are made by Mr. Price and which is elteemed by workmen in .general much. better than any other: but thofe who are converfant with the principles of mechanics, will eafily perceive that neither the one nor the other is good for any thing.

In order to determine the beft manner of making the tenons, it is neceffary to confider, that when a great weight bears upon the middle of thefe joifts, or upon any other timber fupported at each end by tenons; it is evident, that it will bend a little, and the under part x, as in figure 8 , will be the point fix; and therefore when the tenon is placed in the middle as here, the diftance of the line of direction of the force which endeavours to break the joift, from the point fix x, is equal to half the height $x v$; but on the contrary, if the tenon is placed higher, that diftance becomes greater; and of confequence, the refiftance becomes greater, which fhews that the nearer the tenon is to the upper part v, the greater the refiftance will be: But as the mortife muft not be too clofe to the upper edge, otherwife the tenon would break it; I think the beft way is to divide the height $x v$ into four equal parts, one of which is to be the thickncfs of the tenon, and placed two from the lower end x, and one from the upper v : as to the tenons marked in figures 9 , and 10 , they ought to be rejected as being contrary to the principles of mechanics. It is to be oblerved, that all binding-joifts ought to be half as thick again as contmon joifts; becaule, they being weakened by mortiles
and having a greater weight to fupport, it is neceffary that they fhould be ftronger in proportion.

Bridgings or bridging.joifts are reprefented by the letter f, in the firft figure, lying on the binding-joifts d and which a:e alfo reprefented in figure 6 , where n, n, reprefent the fections of two binding-joifts, and d, d, a part of the length of a bridging-joift, and $f f$, that of a cieling-joift, with the manner of their reception by the binding-joifts; the fifth figure is a fection which thews the manner of fixing cieling-joifts c between the deep joifts b, b, where fhallow ones, as a, a, a, are framed in between them, as has been obferved to be the moft genteel way of framing common joifts.

The diftance of bridgings is generally about 12 to 14 inches, and their fcantlings about 3 by 4 inches, or elfe 3.5 by 5 , and their bearing is never more than the intervals of binding-joifts, which is from 3 to io feet, as we have obferved before, and which are laid even or flufh with the girders to receive the boarding.

Cieling-joifts, the moft nender of all other kinds of joifts, as having the leaft weight to fupport, are made about 2 by 3, or 3 by 4 inches, according to the Atrength of the building; thefe are reprefented in the firt figure by the letter g, whofe diftances are generally 12 or 14 inches: thete joifts are tenoned into the binding-joifts, as is reprefented in figure 7 , where n reprefents a fingle mortife made on the one fide of the binding.joifts, and r, s, two double ones called pulleymortifes, in the fide of a parallel binding-joift to receive the other end of the ceiling-joift. Thefe cieling and bridging. joifts are feldom fixed till the building is covered in; when the laft are pirned down to the bindingjoifts. Thefe kind of floors are called bridging-floors, and are the beft fort of carcafe flooring.

Having fhewn the manner of laying the feveral timbers for flooring, it remains now to fhew how the floors themflelves are to be laid; their beauty depends on the colour and fmoothnefs of the boards, without knots,
knots, and the clofenefs of the joints; for which reafon, the carpenters plane the boards, and ftraiten the edges fometime before they are laid, in order that they may be fufficiently dry, and not fhrink afterwards.

As it is not an eafy thing to find a fufficient number of boards free from knots, the beft are generally picked out for the floors of the principal apartments, and the reft are ufed in other places lefs confpicuous. It has been found by experience, that if the boards are ever fo dry, and the edges are anew dreffed, they will hrink again; for which reafon, they never touch them after the firft time : and the beft way of making clofe joints is not to nail down the boards, till a twelve-month after they have been laid; this the workmen will not do unlefs they are obliged to it by agreement, under pretence that it is more work than they can afford to do.

The beft wood for flooring in this country is the fine clear yellow deal well feafoned, which when well laid keeps its colour a great while; whereas the white fort becomes black by often wafhing, and looks very bad. In buildings of confequence the fappy part is cut off, and nothing but the heart is ufed, but then thefe floors are very expenfive. But in common buildings, which are made by contract, they feldom make even ufe of dry ftuff, unlefs it is particularly mentioned in the agreement.

The joints of the boards are commonly made plain, fo as to touch each other only; but when the fuuff is not quite dry, and the boards Shrink, the water runs through them when the floor is wafhed, and fpoils the cieling underneath; for which reafon, they often make feather edges in better buildings, fo as to cover each other of about half an inch; and fometimes they are made with groves and tenants; this laft method, when well executed, appears to me preferable to any other whatfoever.

I am informed', that in the beft buildings, the joints are made with dove tails; then the lower edge is nailed down,
down, and the next drove into it, by which the nails are concealed, which certainly makes the floor look much handfomer than when the nails are feen: for when they are wafhed the nails grows rufty, and appear like fo many black foots upon the floor, which has an ill effect.

The manner of meafuring floors is by fquares of 10 feet each fide; fo that taking the length and breadth in feet, and multiplying them together; then by ftriking off the two laft figures as decimals, the remainder will be the content expreffed by thefe fquares. Thus a floor of 18 feet by 16 , gives 288 fquare feet, or 2 fquares and 88 decimal parts; fo that if the price of a fquare of flooring is known, that of the whole will be eafily found by proportion.

Formerly oaken boards were ufed for flooring, but at prefent they are neglected, excepting upon fome particular occafions, as in clofets and other private rooms: thefe boards are framed together with pannels, like doors, and polifhed with wax, which makes them look very beautiful, and are agreeable to thofe who diflike a wer room; but as they are nippery, and very expẹnlive, they are much out of fahhion.

S E C T. XXIII.

Of ROOFINGS.

Plate XXIII. ${ }^{\mathrm{E}}$ are now come to the formation plates are a part, as being the bafe on which the fmall rafters ftand. We mult, after having formed it, according to the plan of the building, and fecured its angles, in the manner reprefented in the fecond figure, platee XXII. confider the proper diftances ferted, 1. To avoid the joints of the plate: 2. That their diftances be not too great, left you are obliged to have large cieling-joifts, and large purlins, which are but a load to a building, and therefore fhould not exceed ten feet: 3. That they lay over, or nearly over, the heads of the principal pofts, in timber buildings, and on the middle of the piers, when they are of brick or ftone.

The fituation and length of the tie-beams being determined, their urder furface at each end being equal to the breadth of the wall-plate, is dovetailed an inch and a half or two in depth, according to their ftrength, and which are let into both thefe plates, in the manner reprefented by the third and fourth figures, plate XXII; but, as it has been hewn already, with a fingle dovetail; as in figure 4. If the breadth be divided into three equal parts, make the narrow part of the dovetail one, which to the end opens to the whole breadth of the beam. When the tie-beams are thus dove-tailed into the plates, they are then faid by the workmen to be cogged down, and ready to receive the cieling-joits and principal rafters.

But before the principal rafters can be framed, the height of the pitch, and their length mult be determined ; the pitch of every roof ought to be made according to its covering; which is of lead, pantiles, plaintiles, or nates; thefe are all the different coverings ufed in Enylcmd. The ufual pitches are the pedimentpitch, common pitch, generally called true pitch, and the gothic pitch.

Pediment pitch is that whofe perpendicular height is equal to two ninths of the breadth of the building; becaufe the height of a pediment is likewife two ninths of its bale; this pitch is ufed when the covering is lead. Common pitch is that whofe rafters are the three fourths in length of the breadth of the building; when it fpans the building all at once ; but is oftner divided into
into two equal pitches; and it is ufed when the covering is of plaintiles.

Gothic pitch, is that when the length of the principal rafters is equal to the breadth of the building, and therefore is equilateral ; this pitch is ufed when the covering is of pantiles; fome workmen would have the breadth of the building divided into feven equal parts, the perpendicular height to have two of them, and the length of the rafters to be four; and that this pitch may ferve for coverings of lead or pantiles : on the contrary, others will have the perpendicular height to be one fourth of the breadth, when the covering is lead, which is fomething lefs than what has been affigned above for that covering.

That the perpendicular height Ihould be the three eighths of the breadth in pantiles covering, which is widely different from the former; or that the perpendicular height may be found by defrribing an arc from the extremity with a radius of two thirds of the breadth of the building. Laftly, the perpendicular height to be equal to half the breadth for plain-tiles covering, which makes the rafters fomewhat thorter than in the pitch given before for that covering; and the length of the rafters to be five feventh parts of the breadth of the building for flate coverings, which is therefore nearly the fame pitch as that for plain-tiles covering.

Thele are the various pitches commonly ufed for the different coveringe, and feem to depend chiefly on the builder's fancy. We have proved in our Elements (art. 566.) of Matbematics, that if the height is 6 feventernth parts of the breadth, or, which is nearly the fame, if the height is one third of the breadth, the roof will be ftronger than any other of the fame fcantlings; and theietore, if the fcantlings are ftrong in proportion to the weight of the coverings, this pitch may ferve upon all occafions.

Alchough

Although the principal rafters are commonly made equally ftrong every where, yet fome think that if they were at their feet nearly as thick as the breadth of the tie-beams, and to grow lefs towards the upper end, by one fixth part, they would be better; which is certainly true, becaufe their centers of gravity become nearer to the point of fupport; they require lefs timber; and as the rafters may as well be fawed in this manner as in the ufual way, I fee no reafon why this method fhould not be ufed.
The king-pofts fhould be as thick as the tops of the principal ratters, otherwife they will not be able to receive them; and their breadth of fufficient ftrength to receive the ftruts that are defigned to be framed into them. Some will have it that the ftruts fhould diminith upwards as well as the rafters; but this would be carrying niceties further than is neceflary; wlien the lower ends of the rafters are ftrongeft, the purlins, collarbeams, and ftruts, fhould be placed fomething higher than the middle of the rafters, that the bearings may be proportional to the frength, and not in equal parts, as is ufual.

Purlins muft have the fame thicknefs as that part of the principal rafters to which they are framed, and their breadth is generally made to their thicknefs, as 4 to 3; therefore the breadth being 8, the thicknelis muft be 6 : tho' this is the rule carpenters go by, yet their dimenfions ought to be determined by the rules given in the third fection, part I.

Purlins are generally framed into the principal rafters; but, in my opinion, they hould rather be laid in. the collar-beams, becaufe the rafters are not fo much weakened by mortifes, and the ftrength of the puriins will then not depend on the tenons: when they are framed into the principal rafters, their length cannot be more than the diftance between two contiguous rufters, which is from to to 12 feet only; but when they
they are laid in the collar-beams, they may then be twice or thrice that length, according as the 1trength of the ftuff will allow.

Small rafters maý be in their fcantlings 4 inches by 2.5 , or 4.5 by 3.5 , or elfe 5 by 3.5 , according, to the nature and ftrength of the principals, and their length in a purlined roof fhould not exceed feven feet: it is beft to frame two rows of purlins, when the principal rafters are very long, in the manner reprefented in the firlt figure, plate XXIII. by the letters A, A; which figure reprefents the roof, as a plain furface; but the method of framing the purlins in a right line, as here reprefented, is not to be recommended; becaufe when the mortifes in the principal rafters are againft one another, they are not only weakened very greatly in thofe parts, but you lofe the pinning alfo, and therefore they fhould be framed, as reprefented by the letter \mathbf{B} in the fame figure.

The ufe of this figure is, to determine the number and fituation of the principal fmall and jack rafters; the principal rafters are thofe marked by the letter D, and lie through the body of the plan, with tenons reprefented in the middle; the fmall rafters are thofe marked f, between the principals and the jack-rafters thofe fhort ones, whofe tops bear againft the hip-rafters C, and are marked by the letter E ; the purlins are marked by the letters A and B; as to the other parts of a roof, which cannot be feen in this figure, they are reprefented in the following fection.

Fig. 2. This figure reprefents the fection of a large roof, having a king-poft and two ftruts to fupport the principal rafters, the tie-beam is fuppofed to reft in the middle upon fome party or partition-wall, otherwife that beam would not be able to fupport the roof; becaufe the greateft weight, which is under the king-poft, would reft upon the weakeft part, as has been fhewn in the third fection, part I.

Sect. 23. F ORTIFICATION. 241
Fig. 3. This figure is the fection of a roof to be covered with pantiles; the length of the rafters is the two thirds of the breadth of the building, and the height one half; there is a lodging-room made in the middle; this roof is very ft:ong, and may ferve almoft in any building, efpecially if the tie-beam is fupported in the middle by a party-wall.

Fig. 4. This figure reprefents a roof, whofe perpendicular height is three eighths, and the length of the rafters five eighths of the breadth; this roof is alfo very ftrong, but I think that in fmall buildings the king-poft with its two ftruts might be left out without any inconveniency; becaufe the two prick-pofts together with their ftruts are fufficient to fupport the rafters.

Fig. 5. This figure is a fection of a roof of pedi-ment-pitch, with a valley in the middle to take off the barn roof afpect, which it otherwife would have, if the rafters were continued up to an angle; in this roof are made two lodging-rooms, as being framed with a col-lar-beam and middle-poft, which laft mult be fupported by a party-wall, otherwife the tie-beam will farcely be able to fupport the weight upon it, without its being of very large dimenfions.

It may be oblerved, that the pofts in fig. 2, 3 and 4, have all joggles, which are by many workmen not approved of, on account of the walte of timber, and the length of time to frame them; in order to fatisfy thofe that are for plain-work, and yet make it ftrong and durable, it will be fufficient to cut the tenons of the ftruts which enter into thefe joggles, as well as the mortifes, in the fame manner as they are reprefented here by the joggles, which will do very near as well; for all tenons cut at right angles will bear the preffure of the pofts in the ftrongeft manner that can be. It muft likewife be obferved, that all the iron bands reprefented in thele roofs, are thought by the workmen to be very
ufeful in flrengthening the work, though needlefs in my opinion.

As workmen differ very much in their manner of framing roofs; it is impoffible to give fuch rules as will fatisfy every body; but what has here been faid, together with the principles given in the third fection, part I. of the ftrength of different fcantlings, will be fufficient to the intelligent reader, to frame all forts of plain roofs, upon any occafion, in the beft manner, which is all we propofe in this work: As to thofe, called manfard, or broken roofs, and thofe for domes or cupolas, which are the moft difficult of all carpenters work, their conftruction rather belongs to a compleat architect than to an engineer.

But before we conclude this fection, it will not be unneceflary to fhew how the length and pofition of the hip rafters C, C, figure 1 , are to be found ; the diftance $P Q$ of the laft principal rafter D from the end P of the roof is always equal to half the breadth PS of the building; and having the length $Q R$ of the principal rafter D, that of the hip-rafter PR is likewife given, as being the hypothenufe of a right angled triangle P QR.

And becaufe the perpendicular height of the roof is given as well as the diagonal drawn from the point P to the foot of the perpendicular dropt from the point R to the plan of the building; the inclination of the hiprafter C, may be found by a ruler and compaffes; or, by trigonometry, thns; The length of the hip-rafter $\mathrm{P} R$ is to the perpendicular height of the roof, as the radius is to the tangent of the angle made by this rafter and the plan of the building.

Of CEILING.

Although the manner of ceiling is very common, yet it is neceffary, that the young engineer fhould know how it is performed: In buildings of no grat 4 confeque:ac,
confequence, the laths are nailed on the joifts, fo as a part of the girder appears below the ceiling; this is done in view to get 5 or 6 inches in the height of the room; and the part of girders that appear are covered with deal boards, with a liţle cornice round it; and painted with the fame colour as the wainfcot. The plaifter for ceiling is made of lime and hair, to make it ftick the better, and laid on very fmooth; when it is dry and has any cracks in it, as commonly happens, it is paffed over with a trowel dipt in thin plaifter, this is continued till it is quite finooth; and without any cracks; after this it is white-wafhed two or three times over, with lime-water and fize, till it appears of a fine white.

But in -buildings of any confequence, ceiling-joifts are framed into the girders; fo as to be even with the under furface, as has been obferved before: As thefe joifts are put in after the frame of the floor is made, and juft before the ceiling is finihed; one of the mortifes is made about a foor long, noping fo as that when the tenant at one end is fixt into the mortife; the other may fide through the other till it becomes perpendicua lar to the girder where it is pinned down.

As to ceilings made with various work, or that are painted, the curious reader may confult books of architecture, which treat of them; we fhall only add that ceilings are meafured by the yard of 9 feet fquare.

Of WAINSCOTING.

Formerly wainfcoting was made with oak; and it is from thence it has derived its name, but at prefent white deal is ufed only; the rooms were commonly wainfcoted quite up to the cieling, and terminated by a cornice; but the later cuftom is to carry it only up chair high, that is from two to three feet; the reft of the wall is covered with flowered paper, which is very cheap and beautiful, or elfe it is finifhed with ftucro
covered with hangings; to prevent the paper from being fpoiled by the dampnefs of the wall, it is pafted on thin cloth, and fixed in frames.

Walls fhould never be wainfcoted before a twelvemonth ftanding at leaft, two or three years would be better; otherwife the pannels will unglue, do what you will, and fhrink in dry weather, whereby it will be fo fpoiled that all the repairs that can be made will never look well, fo that all the trouble and expences will entirely be loft.

Though the wall is dry, if the ftuff is not fo, it will produce ftill the fame effect; and as dry and well-feafoned fuff is much dearer than that which is green, and not many workmen have it in their power to keep always a ftock of dry ftuff before-hand; it is a very difficult matter to have this work performed as it ought to be: I have feen a houfe that was repaired three times in five years, and now is good for nothing; becaufe the walls were not dry, and the ftuff not fufficiently feafoned; and if government work, which is always well paid for, is fo badly executed, what muft a private perfon expect, if he is not very careful in his bargain, and does not underftand the work himfelf,

Wainfcoting is meafured by the fquare yard of 9 feet, and all the turnings of the mouldings are meafured by a thread, and looked upon as plain, excepting the cornice, which is meafured and paid by the foot in length.

Of HOUSE-PAINTING.

As the various colours for priming and painting are now-a-days made up ready for ufe, and fold in fhops, I Thall fay nothing about them; but only obferve that all painting in and about the houfe fhould be well primed, and paffed over twice with the fame colour the rooms are to be of, and great care muft be taken to fee that the colour is laid full, even, and fmooth, according to the grain of the wood; for when the brufh is drawn
erofs the grain it never looks well; this is to be underftood to be done from the beginning to the entire finilhing of it ; or elfe it will be to no purpofe.

In all out-door painting, the colours fhould be mixed up with linfeed oil, Spani/b white, Spani/b brown, and red lead in the priming, and finifhed with white lead; this done, it will refift the weather, and laft a great while.

Painting is meafured by the fquare yard, in the fame manner as wainfcoting, that is, all the mouldings are meafured with a thread; the fafhes of windows are paid by the piece; if the doors and their frames are painted in mahogony colour, the price is fomewhat more than that of common painting; this fome workmen perform fo well, as to appear at a diftance as weil as that wood itfelf. When chimnies are lined with Portland ftone, they are often painted like marble, and when it is well done, look very neat for three or four years.

Of TYLING-ROOFS.

There are various forts, fuch as plain-tiles, pan-tiles, ridge, hip, gutter, paving, and Dutch-tiles : plain-tiles are the common fort which are ufed in covering of houfes; they are about 10.5 inches long, fix and a quarter broad, and half an inch and half a quarter thick; but in the country they vary fomething from thefe dimenfions; they weigh about 2.5 pounds, that is 100 weigh nearly 2500 pounds. Tyling is meafured by a fquare of 100 fquare feet, and the number of tiles required for fuch a fquare depends on the diftance of the laths; which when 6 inches, requires 800 ; when 6.5 inches, 740 ; when 7 inches, 690 ; when 7.5 inches, 640 , and when it is 8 inches, but 600 tiles.

Pan-tiles are of a quadrangular figure, when flat of about 13 inches long, 6 or 7 inches broad; they are R 3
bent crofs-ways in the form of an S , only one of the arches is about three times as big as the oiher; fo that when they are laid on a roof, one of the ed es which is leaft bent is covered by the edge of the o her that is moit bent, io that the roof looks like furrows, one high and the other low; thefe tiles ferve moftly for low roofs, fuch as ftables, fheds, and outhoufes; about 600 will cover 100 feet fquare.

Ridge-tiles are ufed to cover the ridges of houfes, and are made in the foim of a femi-cylindric furface, of about 13 inches in length, and of the fame thicknefs as plain tiles; their breadth at the outfide mealures about 16 inches or lefs.

Hip, or corner tiles, are at firf made flat like plaintiles of a quadrangular figure, whole two fides are tight lines, and the ends arcs of circles; the upper end concave, and the lower convex, the latter being about feven times as broad as the other; they are about 10.5 long, but before they are burnt are bent upon a mould in the form of a ridge-tile, and have a loole at the narrow end to nail them on the hip.corner: of the roof.

Gutter-tiles are made like conner-tiles, only the edges at the larger ends are, turned up tor about four inches: thefe tiles are feldom uled where lead is to be had, as being better for this purpofe.

Dutch-tiles are comnionly ufed in chimnies; they. are made of a whitifh earth, glazed and panted with various figures, fuch as birds, flowers, or lanuifips, in blue of purple colour; and are about 6.5 inches. each way, and three quarters of an inch thick: when thefe tiles are properly fet with good mortar, they look very beautiful, and caft a greater heat than ftone; for being very finooth, and glazed, the rays of heat fliking upon them are all reflected backward into the room, efpecially when the ficies of the chimnies are oblique or in the form of circular arcs.

Pan-tiles are laid in mortar, becaufe the roof being very flat, and many tiles being warpt in the burning;
chey
they will not cover the roof fo well as that no water can pafs between them. Sometimes thefe tiles are varnifhed with a dark brown colour; which makes them laft a great while, and look better than the others, but are dearer in proportion.

Plain-tiles are not laid in mortar, but pointed only in the infide; as to the ridge and corner-tiles they are all laid in mortar, becaufe they lie feldom fo clofe, as not to admit any water to pafs between them. There are alfo ufed tiles in paving, that are either fquare or hexagonal, which when well burnt and laid in good mortar, look very neat, and laft long; but as paving in general is fo well known, it would be needlefs to fay any more about it.

R 4
PART

$\mathbf{P} \quad \mathbf{A} \quad \mathbf{R} \quad \mathbf{T} \quad$ IV.

Of AQUATIC BUILDINGS.

AS thefe kind of works contain a greater variety than thofe conftructed on dry land, and require much more fkill and knowledge both of the theory and practice; no leffer work than Mr. Belidor's Architecture Hydraulic, is neceffary to give a true knowled : of their conftruction and execution, according to the different fituations and circumftances; As this auther had the affiftance of the greateft engineers in France, who have more experience, and knowledge both in theory and practice, than any others in Eurcope; fo no man had a better opportunity to give every thing neceffary relating to this fubject. Since therefore his works are, or ought to be, in the hands of every engineer, we hall content ourfelves, to give here fome general principles, together with particular obfervations of the moft material parts of thefe, buildings, for the fake of thofe, who have no opportunity to perule fo extenfive a work as his.

S E C T. J. Of STONE-BRIDGES.

THE fituations of bridges are eafily known, and need no explanation; the only thing to be obferved is, to make them crofs the ftream at right angles, for the fake of the boats that pafs through the arches, with the current of the river; and to prevent the continual ftriking of the ftream againf the piers, which
which may endanger them in a long courfe to be damaged and deftroyed in the end.

Bridges built for a communication of high roads, ought to be fo ftrong and fubftantial as to be proof againft all accidents that may happen, to have a free entrance for carriages, afford an eafy paffage to the waters, and be properly adapted for navigation, if the river admits of it ; therefore the bridge ought to be at leaft as long as the river is wide in the time of its greateft flood; becaufe the floping of the water above may caufe too great a fall, which would prove dangerous to the veffels, and occafion the under graveling the foundation of the piers, and abuttments.

To this may be added, by reducing the paffage of the water too much, in time of a great flood, it might break through the banks of the river, and overflow the adjacent country, which would caufe very great damages; or, if this fhould not happen, the water might riie above the arches, and endanger the bridge to be overfet, as it has happened in many places.

When the length of the bridge is equal to the breadth of the river, which is commonly the cafe, the current is leffened by the fpace taken up by the piers, for which reafon, this thicknefs fhould be no more than is neceffary to fupport the arches; and it depends, as well as that of the abuttments, on the width of the arches, their thicknefs, and the height of the piers.

The form of the arch is commonly femi-circular; but when they are of any great width they are made elliptical, becaufe they would otherwife become too high; as has been done at the Pont Royal, at Paris, where the middle arch is 75 feet, and its height would have been 37.5 feet, inftead of which, it is only 24 by being made elliptical.

Another advantage of much more importance arifes from the oval figure, which is, the quantity of mafonry of the arches is reduced in the fame proportion as the radius of the arch is to its height. That is, if
the radius is 36 feet, and the height of the arch 24 , that is, three fourths of the radius, the quantity of malonry of the arches is likewife reduced to three fourths; which muft leffen the expence of the bridge confiderably.

When the height of the piers is about fix feet, and the arches are circular, experience has fhewn, fays Mr. Belidor $_{2}$ it is fufficient to make the thicknefs of the piers the fixth part of the width of the arch, and two feet more; that is, the thicknefs of the piers of an arch of 36 feet ought to be 8 feet; thole of an arch of 48 feet to be 10 .

When the arches become of a great width, the thicknefs of the piers may be reduced to the fixth part of that width; but the depreffion of the two feet is not done at once ; that is, in an arch of above 48 feet, 3 inches are taken off for every fix feet of increafe of the width of the arch. For inftance, the thicknefs of the piers fupporting an arch of 72 feet wide, fhould be 14 feet, according to the preceding rule; but by taking off 3 inches for every 6 feet, above an arch of 48 feet wide, the thicknefs of the piers is reduced to 13 teet: Confequently, by following the fame rule, the thicknefs of the piers fupporting an ach of 66 fathoms wide, will be 16 feet; all the others above that width are the fixth part of the width.

After this Mr. Belidor gives a rule for finding the thicknefs of the piers which fupport elliptic arches, and makes them ftronger than the former: The abuttments he makes one fixth part more than the piers of the largeft arch.

It is plain, that thefe rules are merely guefs-work, determined from fome works that have been executed. But tho' examples are neceffary to confirm the truth of the theory, yet they are not fufficient to form, from one or two bridges that have been built, a general rule for others of different forms or dimenfions, without either making fome ftronger or weaker than they ought
to be; befides, granting this rule to be true, yet when the piers are of any other height, we are quite left in the dark; and therefore, it is neceffary to have recourfe to theory, in order to find how much the piers are to vary in their thicknefs, according to their height, and the width of the arches: But, previous to this theory, it is neceffary to know, the proper thicknefs of the arches at their key-ftones, becaufe that of the piers depends partly on it.

The thicknefs of the arch-ftones, I muft confefs, is not to be determined by theory, at leaft that I know of; nor do thofe authors who have written on the fubject agree amongtt themfelves; Mr. Gautier, an experienced engineer, in his works, makes the length of the arch ftones, of an arch 24 feet wide, two feet; of an arch $45,60,75,90$ wide, to be $3,4,5,6$ feet long refpectively, when they are hard and durable; and fomething longer when they are of a foft nature; on the contrary, Mr. Belidor fays they ought to be always one twenty fourth part of the width of the arch, whether the ftone be hard or foft; becaule, if they are foft, they weigh not fo much.

But that the length of the arch-ftones fhould be but a foot in an arch of 24 feet wide, $2,3,4$, in arches of $48,72,96$, feet, it appears to me impoffible; becaufe the great weight of the arches would, as I imagine, crufh them to pieces, by the preffure againft one another; and therefore Mr. Gautier's rule feems to be much preferable: As he made the length of the archftones to increafe in a llower proportion, from 10 to 45 feet wide, than in thofe above that width; we imagine, that the latter will be fufficient for all widths, whether they are great or little: Therefore in the following computation, we fhall fuppofe the length of the archftones of 30 feet in width to be two teet, and to increafe one foot in fifteen, that is, 3 feet in an arch of 45 feet, $4,5,6$, in an arch of 60,75 , and 90 feet;
and fo the reft in the fame proportion; this being premifed, we fhall proceed to thew how the thicknefs of the piers is to be found.

PROBLEM.

Plate XXIV. Fig. 4. To find the tbicknefs B C of the piers, when the arch is terminated by two concentric Semi-circles, and there is a wall R N above the middle of the piers whole beight is equal to that of the arch, and its bafe to the difference between the breadth A D of the pier, and twice the tbicknefs A G of the arch.

Let the radius $\mathbf{O M}$ pafs through the center of gravity L of half the arch GE, L K, and LI, perpendicular to OA and OL ; then if the radius OA of the interior circle be called a, the radius OG of the exterior one b; their difference A G, d; OK or $\mathrm{KL}=m$, x the area G E of half the arch; the height A B of the piers c, their thicknefs $\mathrm{BC}=z$; laftly, let unity be to r, as the radius is to the femi-circumference; or, which is the fame, let $r=3.142$ nearly; then by what has been faid in the fecond problem, fection II. of the firtt part; we have $4 n=r b b-r a a, \frac{3 r}{4} m=a+\frac{b b}{a+b}$, $g=c+2 m$ - a, and $2 n g-2 n z$ for double the momentum of the arch's preffure againtt the pier.

Now becaufe the bafe R G of the wall above the pier is equal to AD- 2 AG , or $z-2 d$, and its height $\mathrm{R} \mathrm{N}=b, b z-2 b d$ will exprefs the area of that wall, and as the line which paffes through its center of gravity perpendicular to BC bifects that line ; $\frac{1}{2} z$ will be its diftance from the point fix C ; we have $\frac{1}{2} b z z-b d z$ for its momentum; and as the momentum of the pier C A, has been found in the abovecited problem to be $\frac{1}{2} c z z$; double the fum of thefe

Sect. I: FORTIFICATION.
two laft momentums being made equal to $2 n g-2 n z$, gives $b z z+c z z-2 b d z=2 n g-2 n z$; or if we fuppofe $b+c=s$, and $n-b d=s q$; this equation becomes $s z z+2 s q z=2 n g$; whofe fquare
root is $z+q=\sqrt{\frac{2}{s} n g+q q}$.

$\mathbf{R} \quad \mathrm{E} \quad \mathrm{M}$ A R K.

We have fhewn in the fecond fection of the firlt part, after problem the fecond, that on account of the cement and roughnefs of the ftones, the weight of the arch, or, which is the fame, the area n of GE, fhould be diminifhed by one third or more, in order to have the true momentum of the arch; and as in bridges, the parts between the arches are filled up with loofe ftones, their weight will be greater in this cafe, than it would be otherwife; The queftion is therefore to find what value ought to be affigned for n, in order to find the thicknefs of the piers able to fupport the preffure of the arch, when it is loaded with this additional weight. For fince the fpaces above the arches are always fimilar when the upper part of the bridge is horizontal, and confequently proportional to the fimilar parts A G F E, and this is nearly fo in bridges; it is manifeft, that if the whole area A GFE, is taken for the value of n, and the piers are fufficiently ftrong in one cafe, it will be fo in all others.

As the value of n cannot be eftimated fo truly as from fome bridge that has been executed, and is look. ed upon by the mafters of this art as a model to go by ; fo we fhall make it appear, that if n expreffes the whole area AGFE; the thicknefs of the piers will come out nearly the fame as thofe of the Pont Royal at Paris, which fupport the greateft arch.

According to Mr. Belidor, in an arch of 75 feet wide, the thicknefs of the piers whofe height is about 6 feet, fhould be 13.5, when the arch is circular; and 15 feet when
when it is elliptical, as that of the above-mentioned bridges; But we have fhewn in the fecond fection, that the preffure of an elliptic arch is no greater than that of a circular form, on account of the weight being lefs in the former than in the latter; and fince, according to the problem above, the thicknefs of the piers of fuch an arch is found to be 14 feet, when they are 6 feet high, as in thofe of the Pont Royal; it is evident, that the value of n affumed here, agrees with the above rule as nearly as can be expected.

Now as Mr. Belidor fays, that his rules are agreeable. to the practice of the greateft mafters in that branch of engineering, we may prefume, that the thickneffes of the piers, we have found, will be fufficient in all the different cafes that can happen, with this precaution however, that the piers are made of ftrong folid ftones; laid in the beft and moft fubftantial manner.

It is to be obferved, that the thicknefs of the piers here found, are fuch as if there were but one fingle arch; but when there are arches on each fide, the preffure of the one deltroys that of the other; but as all the arches cannot be built together, it is of abfolute neceffity, that the piers fhould be able to refift the preffure of each arch, independent of the adjacent ones; for which reafon, it is neceflary to build the wall G N above the pier before the arches are formed, as Mr. Labely has moft judicioully done at W efiminfterbridge; for by this means, the arch will be in no danger to fall and caute needlefs expences. As to the parts between the arches, and the wall G N, they ought not to be filled up till fuch time as the arches on each fide are finifhed.

TABLE

TABLE containing the thicknefs of the piers of BRIDGES.

					18		
2	57	4.918	5.	$5 \cdot 35$	5.492	5.610	8
25	5.490	5.913	21	6.455	6.64	6.801	
3	6.386	6.816	7.22	7.51	7.7	7.939	-
3	258	7.78	8.20	8.532	8.8	9.037	
	8.404	8.691	9.148	9.52	9.835	10.101	
4	8.	9.5	10.077	10.489	10.837	11.	11
5	9.80	10	10.987	11.435	11.817	12.146	
55	10.640	11.245	11.882	12.364	13.019	13.149	
60	11	12.	12	13.2	13.723	14.109	
6	12.26	13.025	13	14.185	14.654		15.433
70	13.114	13.869	14.517	14.049	15.573		
75	$\underline{14.000}$	14.705	15.336	15.965	16.48 c		17.354
8	14.747	15.542	6.234	16.842	17.381	17.86	18.298
85	15.513	16.328	17.041	17.674	18.237	18.742	19.198
90	16.373	17.201	17.929	I 8.6	19157	19.679	20.152
95	17.184	17.826	18.772	19.438	20.03	20.577	2 L .0
	17	18		20.293	20.908	21.466	21.

The firft horizontal line expreffes the height of the piers in feet, from 6 to 24 feet, each increafing by 3 : the firft vertical column, the width of arches from 20 to 100 feet for every 5 feet.

The other columns exprefs the thicknefs of piers in feet and decimals, according to the refpective height at the head of the column, and the width of the arch againft it in the firft column.

Thus for' example, let the width of the arch be 60 . feet, and the height of the piers 12 ; then the number $12.7 \mathrm{I} \&$, under 12 , and againft $\sigma 0$, expreffes the thicknefs of the piers, that is I 2 feet, and 8.6 inches; we muft obferve again, that the length of the key-ftone
is 2 feet in an arch of 30 feet wide; $3,4,5,6$, in an arch of $45,60,75,90$; that of 20 feet width one foor 4 inches; and the length of any other width is found by adding 4 inches for every 5 feet in width.

As this table contains the thickneffes of piers in refiect to arches that are commonly ufed in practice, we imagined, that to carry it farther would be needlefs; befides, if any other arch of a greater width was propofed, the ftrength of its piers may be found by the foregoing problem, as well as that of any intermediate one not inferted here; or becaufe the difference between the thicknefs of the piers of any two contiguous arches is but fmall; thofe between any two marked here, may be made equal to half the fum of the next below and above it: thus the thicknefs of the piers of an arch 52 or 53 feet wide is nearly equal to 10.222 , half the fum of the thickneffes 9.805 and 10.64 of the arches 50 and 55 feet wide, when the height of the piers is 6 feet.

Rectangular piers are feldom ufed but in bridges over fmall rivers; in all others, they project the bridge by a triangular prifin, which prefents an edge to the ftream, in order to divide the water more eafily, and to prevent the ice from fheltering there, as well as veffels from runnirg foul againft them; that edge is terminated by the adjacent furfaces at right angles to each other at $W_{i j}$ fminfter bridge, and make an acute angle at the Point Royal, of about 60 degrees; but latterly the Frcncb terminate this angle by two cylindric furfaces, whofe bafes are arcs of 60 degrees, in all their new bridges.

When the banks of the rivers are pretty high, the bridge is made quite level above, and all the arches of an equal width; but where they are low, or for the fake of navigation a large arch is made in the middle of the ftream, then the bridge is made higher in the middle than at the ends; in this cafe, the flope muft be made eafy and gradual on both fides, fo as to form above

Sect. I. FORTIFICATION. 257
one continued curve line, otherwife it appears difagreeable to the eye. Mr. Belidor will have the defcent of that flope to be one twenty fourth part of the length; and Mr. Labely fays he made it one twentieth part only, which he thinks to be fcarce preceptible; but as Weftminfer bridge is 1220 feet according to his own account; if half this breadth be divided by 20 , we fhall find 30.5 for the difference between the height of the middle arch and the end of the abutments : now if this can be called fcarcely perceptible, I fhould be glad to know how far this defcent may be carried, fince it is plain, that the flope of Weftminfer bridge is too much by a good deal, according to the beft judges; for the beauty of any bridge confifts, in that one may fee from one end to the other, like a treet, if it is poffible; or, if the nature of the fituation does not permic ir, the leaft rifing is the beft; for which reafon, I fhould think that one fiftieth part of the length is quite fufficient for the defcent; whence, according to this rule, the middle arch of the above mentioned bridge would be about in feet higher than the ends of the abutment, which, in my opinion, would have looked very well.

It may be faid, that the circumitances would not allow fo eafy an afcent, becaufe the arches are circular ; but if the middle arch, which is 38 feet high, had been made elliptical, then that height would have been reduced to 28.5 feet, that is, to three fourths of the prefent height; this would have diminifhed the height of the bridge by 9.5 ; and befides, one fourth of the mafonry contained in the arches would thereby have been faved, which methinks would have been a fufficient inducement to recompence the little more trouble required to make an elliptic arch inftead of a circular one.

The width commonly allowed to fmall bridges is 30 feet; but in large ones near great towns, thefe 30 feet are allowed clear for horfes and carriag: s, befides a
$b_{\text {anquet }}$ at each fide for foot paffengers of 6 to 9 feet each, raifed about a foot above the common rudd; the parapet walls on each fide are about 18 inches thick, andifore feer high; the generally project the bridge with a coriih underneath; fometimes balluftrades ot fone or iron are paced tupon the parapet as at Weftininfer ; but this is only practifed where a bridge of a great length is made near the capital of a councry.

The ends of bridges open from the middle of the two laft arches with two wings making an angle of 45 degrees with the reft, in order to make their entrance more fies and ealy; thefe wings are fuppotted by the famearches of the bridge next to them being continued in the fame manacr of an arch, of which one pier is much !onger than the other.

We have before determined the length of the keyflone, but faid nothing of the others towards the fpring of the arch; which were formerly made all of the fame length, and the reft of the front-walls finifhed with horizontal courfes up to the cordon, and the fpandrels or interval between the arches filled with rubble-ftones without mortar; but now the joints of the arch-ftones are continued quite up to the cordon, and the loofe ftones between the archo the infide are laid in the direction of the fame joints: this way of finifhing the courfes of the ftones, both without and within, is certainly preferable to the former: but the beft and only true method is, to form the outfide courfes, in the manner juft now mentioned, and in the infide, the arch-flones continued fo as to form the curve, whofe conftruction has been given in the laft problem of the fecond fection, part the firft; this being done, and the ftones fo far laid in mortar, they will be in equilibrio with each other, as has been fhewn in that fection; the reft may, be filled up with loofe flones having proper bonds as ufual.

As the conftruation of this exterior curve is fo eafy its execution can admit of no difficulty; but becaufe

$$
\bullet
$$

Digitized by Coogle
we have not given that when the interior curve is an ellipfis, and we have proved that curve to be the beft and only one to be ufed in bridges, we muft beg leave to reier the reader to the fifth fection of the third book of our mathematical treatife, where it is given; it was through overfight omitted in this work.

When the upper part of the bridge is finifhed with ftones in the manner mentioned above, fo as to form one continued curvilinear furface, a bed of fand and gravel is laid all over it, of about 6 feet deep, and then finifhed with paving the middle paffage, or with coarfe gravel, and the banquets are covered with flat ftones for the foot paffengers.

The firing of the arches mould begin at low-water mark, that is, that of the middie or greateft, the reft are raifed fomewhat higher, fo as to make the upper part of the bridge of the profofed defcent; but in a fituation where the water fwells very high in fome particular feafon of the year, regard nuft be had to that, and the arches muft be raifed accordingly.

The firt figure of plate XXIV. is the elevation of a bridge with elliptic arches, the fecond is the plan, and the third a fection through the middle of the arch next to the abutment; the arches are 75 feet wide, the piers 12 high, and 15 broad; the angles at the extremities are right ones, and reach from the bed of the river quite up to the top of the parapet, where they form receffes for paffengers to retire into upon occafion; but the foandation up to the bed of the river is rectangular, for reafons mentioned hereafter. The fection the ws the wings of the bridge in front, and how the arch turns in that place.

We have thus given all the dimenfions of the feveral parts of ftone bridges (for the m , ft part deduced from a well-afierted theory, and therefore may be depended upon with more fecurity than thofe given by utier authors) and which are to be neceffarily known before the building of a bridge is undertaken; we tha' now \& \approx
fhew how to proceed in the execution from the beginning of laying the foundation to the entirely finiming of the work.

How the work is to be carried on.

As the laying th foundation of the piers is the moft difficult part of the whole work, it is neceffary we fhould begin with an eafy cafe, that is, when the depth of the water docs not exceed 6 or 8 feet; and then proceed to thole which may happen in a greater depth of water.

One of the abutments with the adjacent piers is inclofed by a dyke called batardeau by the French, of a fufficient width for the work, and room for the workmen; this batardeau is made by driving a double row of piles, whofe diftance is equal to the depth of water, and the piles in each row are 3 feet from each other; they are faftened together on the outfide by bonds of 6 by 4 inches; this being done, frames of about 9 feet wide are placed on the infide to receive the boards, which are to torm the inclofure, the two uprights of thefe frames are two boards of an inch and half thick, fharpened below to be driven into the ground and faftened together by double bonds, one below, and the other above, each feparated by the thicknefs of the uprights; thefe bonds ferve to flide the boards between; after thefe frames have been driven into the ground as hard as can be, then the boards themfelves are likewife driven in till they reach the firm ground underneath.
Betwien every two piles tie beams are faftened to the bonds of the piles to fatten the infide wall to the outfide one; thefe tie-beams are let into the bonds and bolted to the adjacent piles: This being done, the bottom is cleared from the loofe fand and gravel, by a machine like thofe ufed by ballaft-heavers; and then well-prepared clay is rammed into this coffer very tight and firm, to prevent the water from oozing through.

Sometimes thefe inclofures are made with piles only driven clofe to each other, at others the piles are notched or dove tailed one into the other: but the moft ufual method is to drive piles with grooves in them, 5 or 6 feet diftant from each other, and boards are let down between them.

This being done, pumps and other engines are ufed to draw the water out of the inclofure, fo as to be quite dry ; then the foundation is dug, and the ftones are laid in the fame manner, and with the fame precautions as have been mentioned in refpect to thofe of a fortrefs: obferving to keep fome of the engines always ftanding, in order to draw out the water that may ooze through the batardeau.

The foundation being cleared, and every thing ready to begin the work; a courfe of fones is laid, the outfide all round with the largeft ftretchers and headers that can be had, and the infide filled with afhlers well jointed, the whole laid in terrafs mortar: the facings are crampt together, and fet in lead; and fome cramps are alfo ufed to faften the facings with the infide. The fame manner is to be obferved throughout all the courfes to the height of low-water mark; after which the facings alone are laid in terrafs mortar, and the infide with the beft of the common fort.

The extent of the bafe of the foundation does not fo much depend on the bignefs of the piers as on the whole weight of the fuperftructure, which methinks has not always been fo mnch confidered as fhould have been done; for it is faid, that every courfe hould project about a foot beyond that which is next above it from the height of low water mark, whether the bridge be high or low, the arches circular or elliptic: but as every pier fupports two half arches together with the weight of the ftones laid between the hanches; the bafe ought to be regulated accordingly, as likewife in proportion to the height of the pier. When the foundation is carried to the height of low-water mark, or to
th height where the arches begin, which ought to be either thereabout or at moft two feet above it when the arches are elliptical; then the fhaft or midule wall is to be carried up nearly to the height of the arches, and the:e left ftanding till all the piers are finifhed, in order that the mafonry may be fufficiently dry and fettled before the arches are begun.

As the piers end generally with an angle at each end, it is cuftomary to lay the foundation in the fame manner, which is not fo well as to continue the bafe rectangular quite to the ends of the piers, and as high as loiv-water mark; both becaufe the foundation becomes then fo much broader, and alfo becaufe the water will not be able to gret under it: for when the current fets againft a flat furface, it drives the fand and mud againft it, fo as to cover it entirely; whereas if a fharp edge be prefented to the fream, it carries every thing away, and expofes the foundation to the continual action of the water, which in courfe of time muft deftroy it.

The piers being all finifhed, and the mafonry well fettled; the next thing to be done is to frame and fix the ceners, which ought to be fo folid and ftrong as to be able to fupport the great weight of the arches; as their conitruction is commonly known by workmen, and as thofe made ufe of at Wefiningter-bridge will be explained by Mr. Iabely himfelf, we fhall fay no more of them than to oblerve, that they are fixed at the ends upon the projection of the foundation; and when the arches are ve:y large they are fupported in the niddle by piles, and they muft be raifed by means of iron wedges about 3 inches higher than the arches are intended to be, in order to allow for the fetting of the matonry, thefe wedees by being loofened gadually ferve to eafe the center, fo that it may only juft touch the arch, and fo faciiitate the taking it quite away when the mafonry is fuificiently fettled.

The Frenchengineers fix thin boards on each fide with the directions of the joints marked upon them, for the conveniency of working with more fpeed; this appears to be very uleful, efpecially when the arches are eiliptical; they have patterns befides for every joint, in order to cut the ftones in a proper manner.

Thefe preparations being made, the ftones of the firft courle are crampt together, as alfo ali thofe of every fifth courfe quite up to the key-ftones. All the ftones are to be laid in good ftrong mortar, not very thick, fo that they may lay as clofe as poffible, and caufe but little fettling: the arch being compleated, the center is eafed by means of the wediges, byt left ftanding till the next arch is finifhed; then it is taken away and made fit to ferve for fome other arch; fo that there are not above three centers required to compleat the bridge.

After the intervals between the arches are filled up with ftones laid in a regular manner without mortar, and the gravel is laid over them; two drains or gutters are made length-ways over the bridge one on each fide next to the foot path, of about 6 feet wide, and a foot deep; which, being filled with fmall pebble ftones, ferve to carry off the rain-water that falls on the bridge and to prevent its filtering through the joints of the arches, as often happens.

If the fame precautions were ufed here, as have been above recommended to prevent water from penetrating through arches conftructed under ground, I fhould imagine that this would be much better than the merhod commonly practifed: for when the water paffes through the joints of the arch-ftones, as it does at W eftminfter bridge, it has an ill effect to the eye, becaufe thofe ftones that are wet look of a black colour, different from the reft.

Hezu to build in water with Coffers.

The former method of laying the foundation by means of batardeaus is very expenfive and often meets with great difficulties: for when the depth of water is 8 feet or more, it is fcarcely puffible to make the batardeaus fo tight as to prevent the water from oozing through them; and in that cafe, the number of engines required, as well as the hands to work them, become very expenfive; and if part of the batardeau fhould break by fome extraordinary wind or tide, the workmen would be expofed to very great danger.

Therefore the next and beft method is to build with coffers, when it is practicable, fuch as were ufed at Wefminfer bridge. Since Mr. Labely promifes to give a particular account of their conftruction, and the manner in which they were ufed, we fhall here mention fome few things only, referring the reader for a fuller defcription of them to this gentleman's work, a part of which has been publifhed fince the bridge was finifhed.

The height of water was 6 feet at a medium when loweft, and the tide rofe about 10 feet at a medium alfo; fo that the greateft depth of water was about 16 feet; at the place where?one of the piers of the middle or great arch was to be, the workmen began to drive piles of about 13 or 14 inches fquare, and 34 feet long, fhod with iron, fo as to enter into the gravel with more eafe, and hooped above to prevent their fplitting in driving them; thefe piles were driven as deep as could be done, which was 13 or 14 feet below the furface of the bed of the river, and 7 feet diftant from each other, parallel to the fhort ends of the pier, and at about 30 feet diftant from them; the number of thefe piles was 34, and their intent to prevent any veffels or barges from approaching the work; and in order to hinder boats from paffing between them, booms were placed fo as to raife and fall with the water.

This

This being done, the ballaft-men began to dig the foundation under the water, of about 6 feet deep, and 5 wider all round than the intended coffer was to be, with an eafy lope to prevent the ground from falling in; in order to prevent the current from wathing the fand into the pit, fhort grooved piles were driven before the two ends and part of the fides, not above 4 feet higher than low-water mark, and about 15 feet diftant from the coffer : between thefe piles, rows of boards were let into the grooves down to the bed of the river and fixed there.

The bottom of the coffer was made of a ftrong grate, confifting of two rows of large timbers, the one long-ways and the other crofs-ways, bolted together with wooden trunnels, ten feet wider than the intended foundation. The fides of the coffer were made of fir timbers laid horizontally clofe one over another, pinned with oaken trunnels, and framed togecher at the corners, excepting at the two falient angles, where they were fecured with proper irons, fo that the one half might be loofened from the other if it hould be thought neceffary; thefe fides were lined on the infide as well as on the outfide with three inch planks placed vertically; the thicknefs of thofe fides was 18 inches at the bottom, reduced to 15 aboye, and they were 16 feet high; befides, knee-timbers were bolted at the angles, in order to fecure them in the ftrongeft manner. The fides were faftened to the bottom by 28 pieces of timber on the outfide, and 18 within, called ftraps, about 8 inches broad, and 3 or 4 inches thick, reaching and lapping over the ends of the fides; the lower part of thefe ftraps had one fide cut dove-tail fahion, in order to fit the mortifes made near the edge of the bottom to receive them, and were kept in their places by iron wedges; which being drawn out when the fides were to be taken away, gave liberty to clear the ftraps from the mortifes.

Before

Before the coffer was launched, the foundation was examined, in order to know whether it was level; for which purpofe feveral gauges were made, each of which confifted of a fone of about 15 inches fquare, and 3 thick, with a wooden pole in the middle of about 18 feet long. The foundation being levelled and the coffer fixed directly over the place with cables faftened to the adjacent piles; the maions laid the firft courfe of the ftones for the foundation within it, which being finihed, a fluice made in the fide was opened near the time of low-water; on which the coffer funk to the bottom; and if it did not fet level, the fluice was fhut, and the water pumpt out, fo as to make it float till fuch time as the foundation was levelled; then the mafons crampt the fones of the firtt courfe and laid a fecond, which being likewife crampt, a third courfe was Jaid: than the fluice being opened again, proper care was taken that the coffer fhould fettle in its due place. The fone-work being thus raifed to within two feet of the common low-water mark, about two hours before low water the fluice was fhut, and the water pumpt out fo far as that the mafons could lay the next courfe of ftone, which they continued to do till the water was. rifen fo high as to make it unfafe to proceed any farther; then they left off the work, and opened the fluice to let in the water; thus they continued to work night and day at low-water, till they had carried their work fome feet higher than the low-water mark; after this the fides of the coffer were loofened from the bottom, which made tham float, and then were carried ahhore to be fixed to another bottom, in order to ferve for the next pier.

It muft be obferved, that the coffer being no higher than 16 feet, which is equal to the greateft depth of water, and the foundation being 6 feet under the bed of the river; the coffer was therefore 6 feet under water when the tide was in; but being loaded with three courfes of ftones, and well fecured with ropes faftened ing it no higher much labour and expence were faved, yet it anfwered the intent full as as if had been high enough to reach above teft flood.

The pier being thus carrie abovelow-water mark, the mafons finifhed the reft of it during the intervals of the tides in the ufual way; and after all the piers and abutments were finifhed in a like manner, the arches were begun and compleated as mentioned before: the whole bridge was built in about feven years, without any acciuents happening, either in the work or to the workmen, which is feldom the cafe in works of this nature.

It may be obferved, that all the piers were built with folid Portland ftone, fome of them weighed four tons, the arch-itones were likewife of the fame fort, but the reft of the mafonry was finihed with Kentifh rag.fones; and the paths for foot paffengers were paved with Purbec, which is the hardeft ftone to be had in this country, excepting Plymouth marble.

This method of building bridges is certainly the eafieft and chapeft that can be thought of, but cannot be ufed in many cafes: when the foundation is fo bad as not to be depended upon without being piled, or the depth of water is very great, with a ftrong current and no tide, I do not fee how it can then be practifed. For if piles are to be ufed, it will be next to impoffible to cut them off in the fame level five or fix feet below the bed of the river, notwithftanding that faws have been invented for that purpofe; becaufe, if they are cut off feparately it will be a hard matter to do it fo nicely that the one fhall not exceed the other in height, and if this is not done, the grating or bottom of the coffer will not be equally fupported, whereby the foundation becomes precarious: neither can they be cut off all together; for piles are to be driven as far as the bottom of the coffer extends, which at $W_{e f m i n f t e r ~ b r i d g e ~ w a s ~}^{27}$ feet; the fai muft have three feet play, which makes the total length
length of the faw 30 feet; now if either the water is deeper than it is there, or the arches are wider, the faw muft ftill be longer; fo that I lcave the reader to judge whether this method be practicable or not, in any fuch like cafes.

In a great depth of water that has a flrong current and no tide, the coffers muft reach above the water, which makes them very expenfive, and unweildy to manage, as well as very difficult to be fecured in their places, and kept fteddy : fo that there is no probability of ufing them in fuch a care.

In fome cafes when there is a great depth of water, and the bed of the river is tolerably level, or can be made fo by any contrivance, a very ftronge frame of timber about four times as large as the bafe of the piers may be let down with tones upon it round the edges to make it fink: after fixing it level, piles mult be driven about it to keep it in its place; and then the foundation may be laid in coffers as before, which are to be kept fteddy by means of ropes tied to the piles.

This method has frequently been ufed in Ruffia, as I have been affured by a gentleman who has feen it. Though the bed of the river is not very folid, yet fuch a grate, when once well fettled with the weight of the pier upon it, will be as firm as if piles had been driven under the foundation; but to prevent the water from gulling under the foundation and to fecure it againft all accidents, a row of dove-tail piles muft be driven quite round the grating; this precaution being taken, the foundation will be as fecure as any that can be made.

The French engineers make ufe of another method in raifing the foundations of mafonry under water; which is, to drive a row of piles round the intended place, nearer to, or farther from each other, according as the water is more deep or hallow; thefe piles, being ftrongly bound tegether in feveral placed with horizontal tie-beams, ferve to fupport a row of dove-tail piles

Sect. I. FORTIFICATION,
driven within them; when this is done, and all well fecured according to the nature of the fituation and circumftances, they dig the foundation by means of a machine with fcoops, invented for that purpofe, until they come to a folid bed of gravel or clay; or if the bed of the river is of a foft confiftence to a great depth, it is dug only to about 6 feet, and a grate of timber is laid upon it, which is well fecured with piles driven into the oppofite corners of each fquare, not minding whether they exceed the upper furface of the grate much or little.

When the foundation is thus prepared, they make a kind of mortar called beton, which confifts of twelve parts of pozolano or dutch terrafs, fix of good fand, nine of unflaked lime the beft that can be had, thirteen of fone fplinters not exceeding the bignefs of an egg, and three parts of tile-duft, or cinders, or elfe fcales of iron out of a forge: this being well worked together muft be left ftanding for about 24 hours, or till it becomes fo hard as not be feparated without a pickrax.

This mortar being thus prepared, they throw into the coffer a bed of rubble ftone not very large, and fpread them all over the bottom as nearly level as they can; then they fink a box full of this hard mortar, broken into pieces, till it comes within a little of the bottom; the box is fo contrived as to be overfet or turned upfide down at any depth; which being done, the pieces of mortar foften and fo fill up the vacant fpaces between the ftones; by thefe means they fink as much of it as will form a bed of about twelve inches deep all over: then they throw in another bed of fone, and continue alternately to throw one of mortar and one of fone till the work approaches near the furface of the water, where it is levelled, and then the reft is finifhed with ftones in the ufual manner.

Mr. Belidor fays, in the fecond part of his hydraulics, vol. ii. pag. 188, that Mr. Melet de Montville having filled
filled a coffer containing 27 cubic feet, with mafonry made of this mortar, and funk it into the fea, it was there left ftanding for two months, and when it was taken out again, it was harder then ftone itfelf. - Where fuch mortar can be made, this method has c rtainly the advantage over all the others, not only in build.ng the piers of bridges over deep rivers, but likewile in making piers for harbours, and in all other aquatic works; but before it is made ufe of, I would advife the engineer to make firt a trial of his mortar; fince works of this nature are of too great confequence to be carried on without an abfolute certainty of fuccefs.

We have hitherto mentioned fuch fituations only where the ground is of a foft nature; but where it is rocky and uneven all the former methods prove ineffectual; nor indeed has there yet been any one propofed that 1 know of, which might be ufed upon fuch an occafion, efpecially in a great depth of water; but as an engineer ought to know how to proceed upon all occafions, we fhall therefore mention fome few obfervations under this head. When the water is not fo deep but that the unevennefs of the rock can be perceived by the eye, piles ftrongly fhod with iron may be raifed and let fall down by means of a machine, upon the higher parts, fo as to break them off piece by piece, till the foundation is tolerably even, efpecially when the rock is not very hard; which being done either this or any other way that can be thought of, a coffer is made without any bottom, which is let down and well fecured, fo as not to move from its place; to make it fink, heavy ftones fhould be fixed on the outfide; then ftrong mortar and ftones muft be thrown into it; and if the foundation is once brought to a level, large hewn ftones may be let down fo as to lie flat and even; by thefe means the work may be carried on quite up to the furface of the water.
But when the water is fo deep, or the rock fo hard as not to be levelled, the foundation muft be founded,
fo as to get nearly the rifings and fallings; then the lower part of the coffer muft be cut nearly in the fame manner, and the reft finifhed as before. It muft however be obferved, that we fuppofe a poffibility of finking a coffer, but where this cannot be done, no method that I know of will anfwer; and therefore I leave it to the judgment and knowledge of the engineer employed upon fuch an occafion, in what manner he is to proceed.

Among the aquatic buildings of the ancients none appear to have been more magnificent than Trajan's bridge. Dion Caffus gives the following account of it: "Trajan built a bridge over the Danube, which in " truth one cannot fufficiently admire; for though all " the works of Trajan are very magnificent, yet this "far exceeds all the others: The piers were zo in " number, of fquare ftone; each of them 150 feet high " above the foundation, 60 feet in breadth, and diftant " from one another 170 feet. Though the expence of "this work muft have been exceeding great, yet it be"comes more extraordinary by the river's being very " rapid, and its bottom of a foft nature: where the " bridge was built, was the narroweft part of the river " thereabout, for in moft others it is double or treble " this breadth; and although on this account it became " fo much the deeper and the more rapid, yet no other " place was fo fuitable for this undertaking. The " arches were afterwards broken down by Adrian; but " the piers are ftill remaining, which feem as it were " to teftify, that there is nothing which human inge" nuity is not able to effect." The whole length then of this bridge was 1590 yards; fome authors add, that it was bult in one fummer, and that Apollodorus of Damafcus was the architect, who left behind him a defcription of this great work. It is a great lofs to the world that his defcription has not come down to us, fince it would have fhewn both how thefe works were carried on formerly
formerly and how far madern builders are inferior to the antients.

S E C T. II.

Of Harbours.

THE making and inclofing harbours with piers, fo as to refint the wind and waves for the prefervation of fhips in ftormy weather, is one of the moft ufeful and neceffary works that can be made in a trading nation, fince the fecurity of their wealth and power depends greatly upon it ; for many hips have been' caft away, and the lives of many people loft, for want of a fecure harbour, which might have been faved for a moderate fum of money, had it been properly applied.

Though engineers are not generally employed here in England in fuch kind of works, yet it is properly their bufinefs; this may perhaps rather be owing to their want of fkill in them to any thing elfe : but fince fortreffes are generally built near the fea or navigable rivers for the fecurity of trade, and this cannot be fecured without building fafe harbours; therefore it ought to be the particular ftudy of every'young engineer, who is defirous of being ufeful to his country, or of diftinguifhing himfelf, to make himfelf mafter of this branch of bufinefs.

As it feldom happens that fuch works are carried on at home, he fhould attentively examine thofe harbours already executed, both at home and abroad, and take notice of their figure, fituation, entrance, wind and tide, whether the fhips can go in with fafety in foul weather, and out when favourable; whether it would have been better if the entrance had been made elfewhere; whether the piers are ftrong and folid, or want often to be repaired, and in general whether the harbour

$$
\because
$$

Digitized by GOOgle
harbour anfwers in every refpect the intention for which it was built.

He ought to get information from the inhabitants, workmen, or the builder himfelf, if he is alive; to know the reafons for making it of that figure, why the entrance is placed in that fituation, how the foundations were laid, what accidents happened, how long it was in building, what number of hands were employed, and what the expences have been.

Having thus examined as many harbours as he could conveniently fee, and having made himfelf acquainted with the manner of their building, he will be able to judge, when a new one is propofed, whether the fituation is proper or not, and how it may be executed in the beft and fecureft manner, together with what the expences would nearly come to.

But before a young engineer enters upon practice, he fhould have a proper knowledge of the mathematics, efpecially of that part which treats of the mechanical powers and hydraulics, in order to know in what manner engines are conftructed and applied to the feveral ufes they are intended for; this he may obtain by confulting thofe authors who have written upon them, and by examining the engines themfelves, to fee if they anfwer the intention, or whether they might not be improved; or elfe, if others could not be invented of a different form, which would be more fimple, and more expeditious.

In order to affit beginners, we fhall fet down here the principal enquiries to be made before a harbour is executed, the manner of laying the foundation, and how the works are to be carried on moft fecurely, in the plaineft and eafieft manner that we could think of, and which has been approved of by moft authors who have treated of this futject.

The firft thing to be confidered is the fituation, which may be fome large creck or bafon of water, in or near the place were the harbour is intended to be fea; for a harbour fhould never be dug entirely out of dry land, unlefs upon fome extraordinary occafions, where it is impoffible to do otherwife, and yet a harbour is abfolutely neceffary; when a proper place is found, before it is fixed upon, it muft be confidered whether fhips can lie there fafe in formy weather, efpecially when thofe winds blow which are moft dangerous upon that coaft ; whether there be any hills, rifing ground, or high buildings that will cover it ; in thefe cafes the fituation is very proper; but if there be nothing already that will cover the fhips, it muft be obferved whether any covering can be made at a moderate expence, otherwife it would be ufelefs to build a harbour there.

The next thing to be confidered is, whether there be a fufficient depth of water for large fhips to enter with fafety, and lie there without touching the ground, and if not, whether the entrance and infide might not be made deeper at a moderate expence; or in cafe a fufficient depth of water is not to be had for large fhips, whether the harbour would not be ufeful for fmall merchantmen; for fuch a one is often of great advantage when fituated upon a coaft much frequented by fmall coafting veffels.

The place where the entrance is to be made ought to be well confidered; it ought to be fuch that the hips may enter in foul weather and go out when fair : for though fhips may enter when in diftrefs, yet if they cannot go out when the wind is fair to purfue their voyage and not to lofe their market; fuch a harbour would not anfwer the end for which it was defigned.
It is therefore neceffary to confider well the current, tide, and winds, as alio the banks of fand near about it; and to confult the mafters of fhips as well as the pilots who live thereabout, or frequent the coafts: they are better judges where the entrance fhould be than any body elfe; but if it hould happen that they are divided

Sect. 2: FORTIFICATION.
in their opinions, as it often is the cafe; it will be prudent not to determine the fituation of the entrance till part of the piers are built, and fufficient obfervations made, where it will be moft convenient.

When a fituation has been found that has all or moft of thefe requifite advantages, an enquiry is to be made concerning the materials to be ufed in building the piers, where they are to be had; if upon the fpot, near at hand; or when at a diftance, whether they are to be brought by land or water carriage, or partly one way and partly the other; their prime coft muft be known, the expence for bringing them to the fpor, the time re'quired, and the expence of the workmanfhip to make them ready for ufe.

All thefe preparative enquiries being made, the form or figure of the harbour muft be determined in fuch a manner that the fhips which come in when it is formy weather may lay fafe, and fo as there may be fufficient room for as many as pafs that way: the depths of water where the piers are to be built, mult be taken at every ten, fifteen, or twenty feet diftance, and marked upon piles driven here and there, in order that the workmen may be directed in laying the foundation.

This being done, it muft be confidered what kind of materials are to be ufed, whether ftone, brick, or wood: when ftones are to be had at any moderate price, they ought to be preferred, becaufe the work will be much Aronger, more lafting, and need fewer repairs than if made with any other materials: but when fones are fcarce, and the expence becomes greater than what is allowed for building the harbour, the foundation may be made of fone as high as low-water mark, and the reft finifhed with brick. If this manner of building fhould ftill be too expenfive, wood mult be ufed; that is, piles are driven as clofe as is thought neceffary, which being faftened together by crofs-bars, and covered with ftrong oaken planks, form a kind of coffer, which is filled with all kinds of ftones, chalk, and
fhingles, as will be explained more at large hereafter.
The materials being fixed upon, an eftimate is made of the expences; the number of hands to be employed at a time is determined, fo as they may conveniently work without interfering with one another; and from thence it may be nearly computed what time will be required for compleating the whole work.

The manner of laying the foundation in different depths of water, and in various foils, requires particular methods to be followed: when the water is very deep, the French throw in a great quantity of fones at random, fo as to form a much larger bafe than wouldbe required upon dry land; this they continue to within 3 or 4 feet of the furface of the water, where they lay the ftones in a regular manner, till the foundation is raifed above the water; they then lay a great weight of ftones upon it, and let it ftand during the winter to fettle, as likewife to fee whether it is firm, and refifts the force of the waves and winds; after that they finif the fuper-ftructure with large ftones in the ufual manner.

As this method requires a great quantity of ftones, it can be practifed but in a few places, where ftones are in plenty; and therefore the following one is much preferable. A coffer is made with dove-tail piles of about 30 yards long, and as wide as the thicknefs of the foundation is to be; then the ground is dug and levelled in the manner defcribed in the laft fection; and the wall is built with Beton mortar, as has been defribed in the fame fection.

As foon as the mortar is tolerably dry, thofe piles at the end of the wall are drawn out, the fide rows are continued to about 30 yards farther, and the end inclofed; then the foundation is cleared, and the ftones laid as before. But it muft be obferved, that the end of the foundation finifhed is left rough, in order that the part next to it may incorporate with it in a proper manner; but if it is not very dry it will incline that in next to it; this method is continued till the whole pier is entirely finifhed.

It muft likewife be obferved, that the piers are not made of one contiued folid wall; becaufe in deep water it would be too expenfive; for which reafon; two walls are built parallel to each other, and the interval between them is filled up with Chingle, chalk, and ftone: As thefe walls are in danger of being thruft out or overfet, by the corps in the middle, together with the great weight laid at times on the pier, they are tied or bound together by crofs-walls at every 30 or 40 yards diftance, by which they will fupport each other in a firm and ftrong manner. For want of thefe crofs-walls it has happened, not many years ago, that the walls of a work were overfet for the fpace of fome hundred yards.

If fuch mortar can be made as what the French call Beton, there can fcarcely be found a better method than that above for laying foundations in deep water, and it may be ufed upon all occafions; but as fuch mortar is not every where to be had without great expences, I imagine that common terrafs mortar, mixt with fmall ftones, and fome cinders if to be had, will anfwer the purpofe as well; but the engineer, who is to carry on the work, ought to make trial of it before he ufes it.

If the foundation be bad to a great depth, I would fink it only about 4 feet below the bed of the river; and lay a ftrong grate of timber, as in thofe of the piers of a bridge; but if it fhould be rocky, a coffer mult be made without a bottom, and the under part cut nearly with the fame rifings and fallings, according to the manner mentioned in the laft fection.

In a country where there is a great plenty of ftones, piles may be driven in as deep as they will go, at about two or three feet diftance, and when the foundation is funk and levelled, large ftones may be let down, which
will bed themfelves; but care muft be taken to lay them clofe, and fo as to have no two joints over each other; and when the wall is come within reach, the flones mult be crampt together.

Another method practifed, is to build in coffers much after the fame manner as has been done in building the piers of Weftminfer-bridge; but as in this cafe the ends of the coffers are left in the wall, and prevent their joining fo, well as to be water-tight, the water that penetrates through and enters into the corps, may occafion the wall to burft and to tumble down. Anothet inconveniency arifing from this manner of building is, that as there are but few places without worms, which will deftroy wood wherever they can find it, by their means the water is let into the pier, and confequently makes the work liable to the fame accident as has been mentioned above.

To prevent the incoveniencies of this method, I would take the wood away, and joggle the ends of the walls together with large ftones, and pour terrafs mortar into the joints; when this is done, the water between the two walls may be pumpt out, and the void fpace filled up with ftone and fhingle as ufual: or if thefe joggles cannot be made water-tight, fome dovetail piles muft be driven at each end as clofe to the wall as can be done, and a ftrong fail-cloth put on the outfide of them, which, when the water is pumpt out, will ftick fo clofe to the piles and wall, that no water can come in. This method is commonly ufed in Ruffia, as I have been informed.

Plate XXV. In order to underftand clearly the method of building piers, we have given the plan and fection of one of the walls, in the firft figure; fuch as had been propofed for inclofing a harbour, upon a chalky foundation: the water is but 6 feet high when loweft, and rifes to 24 when the tide is in. The manner propofed for building the piefs, was to dig the foundation about two feet deep, which is fufficient for fuch a ground,

Sect, 2. FORTIFICATION.
a ground, and to fink large blocks of ftone of about 3 feet high, which could have eafily been crampt together at 3 or 4 feet under water; then to lay another courfe of large ftones over the firf, and to cramp them as before; the fame thing was to be done, till the wall was carried about two feet above low-water mark : or if this method of laying the foundation was not approved of, to lay it in coffers in the manner mentioned above:

It was faid, that the funds allowed for building the harbour were not fufficient to make the piers entirely of ftone; for which reafon, the reft was to have been continued with hard bricks, fuch as are called clinkers, to about 8 feet high; then a courfe of ftones was to be laid of a foot high and crampt together; after this bricks were to be laid again to the fame height as before, and then another courfe of ftone; this was to have been continued quite up to the entire completion of the pier.

The ftone foundation being 8 feet high, that is, from two feet under the bed of the water to low-water mark; and from thence to the top being 23 feet; therefore the infide wall is five feet higher than high-water mark; and as the outfide wall has a parapet of 5 feet high, and 3 or 4 thick; this wall is ten feet higher than the water when the tide is in; which height was thought neceffary, in order to cover the people flanding there, from the water, becaufe the waves rife very high in that place, at certain times of the year.

Thé walls were to be 28 feet diftant from each other, five feet thick above, and the bafe of the flope one fifth of the height; which would have made the thicknefs of the piers 34 feet above, befides the parapet, which takes up 4 , and 50 near the bottom of the water. At every 30 feet diftance was to be made a crofs or tie-wall, of three feet thick, to bind the two walls together; this diftance may be greater near the fhore, where the waves have not fo great a force as farther from it ; and
to fave trouble as well as expences, thefe crofs-walls were to be built with low arches upon piers of four feet long, beginning at low-water mark, as may be feen in the plan and fection.

The thicknefs of a pier depends on two confiderations; it ought to be both fuch as may be able to refift the fhock of the waves in formy weather, and alfo to be of a fufficient breadth above, that fhips may be laden or unladen whenever it is thought neceffary. Now becaufe the fpecific gravity of fea-water is about one half that of brick, and as 2 to 5 in comparifon of flone, and fince the preffure of ftagnated water againft any furface is equal to the weight of a prifm of water whofe altitude is the length of that furface, and whofe bafe is a right angled ifofeeles triangle, each of the equal fides being equal to the depth of the water, therefore a pier built with bricks, whofe thicknefs is equal to the depth of the water, will weigh about four times as much as the preffure of water againft it: and one of ftone of the fame breadth about 6 times and a quarter as much. Now this is not the force to be confidered, fince this preffure is the fame within as without the pier; but it is that force with which the waves ftrike againft the piers, and that depends on the weight and velocity of the waves, which can hardly be determined; becaufe they vary according to the different depths of water, the diflance from the fhore, and according to the tides, winds, and other caufes. Confequently the proper thicknefs of the piers cannot be determined by any other means than by experience.

Practitioners fuppofe, that if the thicknefs of a pier is equal to the depth of the water, it is fufficient; but for a greater fecurity they allow 2,3 , or 4 feet more; this might probably do, if piers were built with folid ftones crampt together; but as this is hardly ever the cafe, and on the contrary, as the infide is filled up, with fhingle, chalk, or other loofe materials, their rule is not to be depended upon: befides it makes the fpace

Sect. 2. FORTIFICATION.
fpace above too narrow, for lading and unlading the fhips, unlefs in a great depth of water; fo that it does not appear that their method can be followed excepting in a very few cafes where the water has but very little motion.

The reader will eafily perceive, that the plan and fection reprefented in this plate, may ferve for a pier built either of all ftone or brick, or elfe with both mixt together; by obferving only to make the walls fomething ftronger when they are made with bricks, than when of ftone. When ftone can be had, no other materials fhould be ufed, becaufe they being of a larger bulk than brick, will refift better the waves by their own weight, till fuch time as the mortar is grown hard; for after this is effected, brick will refift better againft the action of fea-water than foft ftones.

The wall muft be built with terrafs mortar from the bottom to the height of low-water mark, and the reft finiifhed with cinder or tile-duft mortar, which has been found fufficiently good in thofe places where the wall is wet and dry alternately. The upper part of the pier fhould be paved with flat hewn ftones laid in ftrong mortar, in order to prevent any water from penetrating into the pier: iron rings ought alfo to be fixed here and there at proper diftances, to faften the fhips, and prevent them from ftriking againft the pier when agi; tated by the waves.

At the mouth of the harbour the piers fhould be terminated with plat-forms, or forts, to place guns there, in order to defend the entrance, in cafe of neceffity. Sometimes piers are built fo large as to place fore-houfes upon them, efpecially in fea-port towns, where fleets are fitted out : this has been done at Toulon, about the harbour of the royal navy, whereby the fhips are covered from the wind, as well as from being feen from without; fo that a fleet may be fitted out in a private manner.

Wooden

Wooden fenders or piles fhould be driven at the infide clofe to the wall, and crampt to it with iron, to prevent the fhips from touching them, and from being worn by their continual motion. Where the fea breaks againft the piers with great violence, breakers fhould be made at proper diftances; that is, two rows of piles are driven nearly at right angles to the piers for the length of about 12 or 15 feet, and at about 8 or 10 feet diftant from each other; and then another to join the two former; thefe piles being covered with planks, and the infide being filled with fhingle and rubbleftones, then the top is paved with ftones of about a foot in length, fet long-ways to prevent the waves from tearing them up. This precaution is abfolutely neceffary where the water rufhes in very ftrongly.

The fection reprefented here, contains 1035.6 cubic feet of mafonry, for every foot in length, and $834 \mathrm{cu}-$ bic feet of rubbin or fhingle to fill up the infide; fo that knowing the length of the piers, and the price of the materials and workmanhhip, the whole expence for building the piers will be eafily known; barring accidents, which unavoidably will happen in all works of this kind, and for which the Frencb generally allow one fixth part of the expences computed.

When it happens that ftones are not to be had, without great expence, or the importance of the harbour is not much; then piers are built with timber, fuch as that at Dover, and in many other places. The plan and fection reprefented by the fecond figure may in fuch a cafe be aptly applied; the breadth above of the fection is 30 feet, the bafe of the flope of the outward piles one fixth part of the height, which is here the fame as in the former fection, that is, 29 or 30 feet: the piles are about 14 inches fquare, the crofs-beams a from 10 to 12 , and the tie-beams $b, 8$ by 10 . Thefe frames are from 12 to 15 feet diftant from each other, and three piles are to be driven between them, as may be feen by the plan; there are befides two rows of Mort piles on
e_{a} ach fide of the pier, five feet diftant from the long ones; and which reach no higher than low-water mark.

The reafon for driving thefe fhort piles is, that being always under water they will not decay, and nothing will hurt them, excepting worms; fo that when the long ones, which are expofed to wet and dry, are decayed, the foundation remains found and firm; by which means it will be eafy to repair that part of the pier above low-water mark, whenever there is any occafion for it. And to fecure the foundation ftill better, dove-tail piles of about 6 inches thick, are to be driven all round, and ftrongly faftened together with timbers, one above to receive the heads, and others on the outfjde.

The fides of the piers are to be covered with good oaken planks of about 4 or 5 inches thick, faftened to the tie-beams b, with wooden trunnels; or elfe, thefe planks may be placed on the infide of the tie-beams b, which, in my opinion, is better, becaufe the preffure of the fhingle and rubble-ftones with which the infide of the pier is filled, will not be able to loofen the planks, as it might do, when they are faftened on the outfide.

It is faid, that when the planks are faftened on the infide, they cannot be eafily repaired when there is occafion for it ; but this objection is inconfiderable, in refpect to the advantage arifing from this pofition; for the rotten plank being taken away, a new one may eafily be flipped into it's place, between the tie-beams b, and the fhingle : and if they cannot be faftened with wooden trunnels, it may be done with iron nails. The planks muft reach about 4 feet above the upper furface of the pier, and be fecured with proper timbers, fo as to form a kind of parapet on each fide, in order to prevent the people, ftanding there, from being wetted by the waves in formy weather.

This frame is the moft fimple, and the moft natural that we could think of; and yet as Atrong, in my opinion, as can be defired to. refift the action of the waves let them be ever fo great: it is true, that moft of the workmen
workmen will think it infufficient, as having no braces, of which they are fo fond, that they think no work well fecured without them; but as I do not efteem them neceffary, I have omitted them here.

In thofe wooden piers I have feen, there was no bafe made with fhort piles, fuch as are reprefented in the fecond figure; for the long piles reached from top to the bottom, and no dovetail piles were driven to fecure the foundation, as far as I could find; but fince fuch works ought to be made in the moft fecure manner, and fo as not to want continual repairing; I would advife the directors of them, to confider well the nature of the fituation, as well as the importance of the harbour, before they form a fcheme for building the piers.

What has been faid here in regard to the building of piers for harbours will equally ferve for that of quays, and all other works made in water; it muft only be obferved, that as quays are often loaded with very great weights, the wall muft be made much ftronger than thofe of ramparts, which fupport the preffure of earth only. But to give fome rule whereby the reader may be directed, I imagine that, if the thicknefs be treble that of the wall of a rampart of the fame height, it will be fufficient: thus if the height of the quay be io feet, and the bafe of the flope one fixth of the height; by trebling the height 1.5 feet, found in table the firlt for the thicknefs above of a wall of the fame height, we get 4.5 feet for the thicknefs above of the faid wall. To fecure thefe walls yet better, piles are driven on the infide about 20 feet diftant from the wall, and about 15 feet from each other ; the heads of which are tenoned into a beam, and others laid acrofs are let into this beam at one end, and at the other going through the wall are fixed to the fenders on the outfide with iron ftraps bolted into thefe beams.

Sectio $\frac{\square}{\square \pi} \frac{\square}{\Omega}$

S E C T. III.

Of SLUICES and AQUEDUCTS.

SLUICES are made for various purpofes; fuch as to make rivers navigable; to join one river to another, which is higher or lower, by means of a canal; to rife inundations upon particular occafions, or to drain fpots of ground that are overflown by high tides: they are alfo made in fortreffes, to keep up the water in one part of the ditches whilft the other is dry; and to raife an inundation about the place when there is any apprehenfion of being attacked.

- Sluices are made different ways, according to the ufes they are intended for; when they ferve for navigation, they are fhut with two gates prefenting an angle towards the ftream: when they are made near the fea two pair of gates are made, the one to keep the water out and the other in, according as occafion requires; in this cafe, the gates towards the fea prefent an angle that way, and the others the contrary way; the fpace inclofed by thefe gates is called Cbamber.

When fluices are made in the ditches of a fortrefs to keep up the water in fome parts, inftead of gates, fhutters are made, fo as to fide up and down in grooves; and when they are made to raife an inundation, ithey are then fhut by means of fquare timbers let down into cullifes, fo as to lie clofe and firm.

Yarticular care muft be taken in the building of a fluice, to lay the foundation in the fecureft manner that is poffible; to lay the timber grates and floors in fuch a manner that the weather cannot penetrate through any part, otherwife it will undermine the work, and blow it up, as it has fometimes happened: Laftly, to make the gates of a proper ftrength, in order to fup-
port the preffure of the water, and yet to ufe no more timber than what is neceffary.

As a general conftruction is much preferable to particular ones, we thall follow the example of Mr. Belidor, who is the firft that gave one for nuices; but before this can be donee, it is neceffary to know its width, and the depth of water it is to contain, and from thence the dimenfions of the feveral parts are determined, as will be fhewn hereafter.

When fluices are made in a canal, or ravigable river, their width will be known from the fize of the veffels that are to pafs through them, as well as the depth of water they require; when they are made in a fortrefs to pen up the water in one part, and to keep the other dry, their width is determined by the quantity of water that is to pafs through them in a certain time: When they are near the fea, or a river where there is a tide, and they are to keep up the water at a certain height ${ }_{3}$ their width and depth are alfo determined from the nature of the fituation; and in general, the width and depth of a luice is always known from its fituation, and the ufe it is intended for.

This being premifed, we fhall give a general conAtruction of a great lluice with two pair of gates, in fuch a manner as to be applicable to any particular cafe, provided a proper allowance be made for the various circumftances that may happen, in regard to their ufe and fituations, which may change fome of the parts, as fhall be mentioned in its proper place.

To confruct the Plan of a Sluice.

Plate XXVI. Suppofe half the width OC to be divided into fix equal parts, or the whole into twelve; thefe parts ferve for a fcale, whereby the dimenfions of the work are determined: through the point O , draw the line A B at right angles to OC; take OB on one fide of the point O equal to 30 of thefe parts, or, which is the fame, equal to two widths and a quarter; through

Sect. 3. FORTIFICATION.
the points A, B, draw the lines A R, B S at right angles to AB; let the lines paffing through the point C, and parallel to $A B$, meet thefe laft lines in M, Q; then if $M N, P Q$ be taken each equal to 9 parts, and each of the lines MR, QS equal to fix, the lines NR and PS will determine the wings of the lluice, and N P the body. If the lines AR, BS be produced fo as the parts R V, S T are each 6; they will determine the faces.

The part B O of the length exceeds the other part O A by one fourth of the width, becaufe we fuppofe. a turning bridge is to be placed on that fide for a communication from one fide of the nuice to the other; but when there is io occafion for fuch a bridge, OB is made no longer than OA ; and then the total length will be but four times and a half the width, which is efteemed by Mr. Belidor the beft length that can be given to a great lluice.

To determine the chamber and the pofition of the gates, take OD, OL, each equal to four parts, and draw the lines DG, LH parallel to OC; then if the lines GK, HI be drawn fo as to make the angles DGK, LHI, each of 35 degrees, and 16 minutes, that pofition will be the beft that can be given, by art. 566 of our Elements of Matbematics; or, becaufe a linear conftruction is preferable to that by angles, the pofition of the lines GK, HI, is determined in the fame manner as the line AE in fig.' 7 , plate the fifth, page 90 , of this work.

The cavities z, y, are a foot each way in large fluices, and but 9 inches in middling ones; they ferve for letting down fquare timbers to form a batardeau or each fide, in cafe the gates or floor want to be repaired.

The receffes $\mathrm{G} a, \mathrm{H} b$ in the wall, are made to receive the gates when open, and are of fuch a depth that they may be fluh with the wall, and not make that part narrower than the reft of the fluice.

The thicknefs of the wall from \mathbf{N} to \mathbf{P} is equal to four fifths of the depth of water, the parts R N R, P S, three fifths, and at V, T two fifths. The counterfort W , is determined by producing the lines $\mathrm{L} H, \mathrm{D}$, and projects beyond the wall by one fourth of the width of the fluice.

Observations on the Construction:

As we differ in fome parts of our conftruction from that given by Mr. Belidor, it will not be improper to acquaint the reader with the reafons that have induced us to do fo. Firf, We made the length L D, equal to 8 parts inftead of 7 , to avoid a fubdivifion of parts; the difference of one part being immaterial. ' 2. According to our conftruction, the length GK of the gates comes out to be 7.34 parts nearly; and as Mr. Belidor makes the lines D K one fifth of the width, the length of his gates is 6.46 parts nearly ; but as our conftruction gives the moft advantageous pofition, and that of Mr.-Belidor's depends on no fubftantial reafons, we imagine that the difpofition here given is preferable to his: It is true, he has endeavoured to prove that his pofition is that which the gates ought to have, but all his reafoning is grounded upon wrong fuppofitions; befides, as the length of our gates does not differ above 38 inches in the largeft fluice that is made, from the length he gives, we imagine that this difference is more than recompenced by the true pofition. 3. Mr. Belidor makes the lines MR, QS, 7 parts inftead of 4 , which difference is very little.

As to the thicknefs of the fide-walls, Mr. Belidor makes it equal to the depth of water in the nuice, in order, as he fays, that they may be fo ftrong as to refift in all accidents that can happen; befides, he adds five counterforts on each fide; their length is equal to the thick nefs of the wall, and the mean thicknefs five eighths of their length.

Sect. 3. FORTIFICATION.
It is certain, that in conftructing fuch works as thefe, particular eare fhould be taken to make them ftrong, and durable ; yet it ought to be confidered, that by making ufe of more mafonry than is neceffary, it encreafes the expences confiderably, and therefore all exceffes fhould be avoided.

Now the proper thicknefs of thefe walls may be determined in the fame manner as that of thofe which fupport earth, by comparing the fpecific gravity of water to that of fone or brick; but it mult be obferved, that the triangular fection of water has its bafe at the bottom inftead of being above, as in the fection of earth : by this method it will be found, that if the thicknefs of a ftone wall be four fifths of the depth of the water, as we have made it, it will be able to fupport a preffure four times greater than that of the water; which in my opinion is fufficient upon all occafions whatfoever: but when the wall is made of brick, its thicknefs muft be equal to the depth of water, in order to have the fame frength.

Hence it will be found, that the quantity of mafonry contained in a fluice, according to our conftruction, is to the quantity, according to Mr. Belidor's, as 542 to 723, or as 3 to 4 nearly; therefore, if one one fourth of the mafonry can be faved, as it appears by what has been faid, without making the walls too weak, the method we propofe has greatly the advantage of that given by Mr. Belidor.

It may be obferved, that the walls have been fuppofed to have no llope; but in practice they have, or ought to have one on the outfide, and as there is likewife the preffure of the earth, which helps to fupport the wall ; by thefe means its refiftance is ftill greater than we have fuppofed it to be.
It muft alfo be obferved, that as the width of the fluice is divided into as many parts as there are inches in a foot; each part will be as many in inctes as the width is feet; fo that when the width of a nuice is nuice is to be 42 feet wide, each part will be 42 inches, or 3 feet 6 inches, and fo in any other cafe.

When a fluice is built in a place where a great quantity of water is to pafs, two or more paffages are to be made ; that is, two or more nuices are built at the fide of each other; the fe paflages have fometimes the fame width, and at others not, according to the circumfances that render them more ufeful one way than another.

Whence in a fluice that ferves to form an inundation, or to keep up water, thefe paffages are made of an equal width; but in canals and large rivers that ferve for navigation, the one is made fo wide as that large veffels may go through it, and the other ferves for fmaller veffels. This has been done in the canal at Mardick, where the largeft is 44 feet, and of confequence wide enough for the fecond rate of men of war to pafs through it, and the other is 24 feet, which ferves for fmaller veffels.

Of the Timber-grates under the Floor and Foundation.

If the foundation be bad, we fuppofe piles to be driven under the cloffings of the heepers m, and the tie-beams n, in the manner mentioned in the feventh fection of the third part; and to prevent the water from getting under the foundation, fix rows of dovetail piles are driven, viz. one at each end, one at each of the angles N, P, marked p, and one on each fide of the chamber ; and it muft be obferved, that, excepting thofe at the angles E, P, the reft are all driven between two heepers, in order to keep them tight and clofe to gether. The neepers and tie-beams are partly let into each other, and bolted together; but before this is done, the loofe earth is removed from between the fleepers for about two or three feet deep, and filled up with ma-

Sect. 3: F ORTIFICATION. 291 fonry before the tie-beams are laid: this mafonry is carried on fo, as that when a bed of mortar is laid over it, it may be even with the upper furface of the feepers; then the infide of the fluice is covered with a floor of three inch thick oaken planks, laid long-ways, and nailed to the fleepers; this floor extends a few inches on each fideover the foundation of the fide-walls, to prevent the water from penetrating through the edges of the floor.

Bricks are ufed preferably to fmall ftones, to fill up the parts between the grating, as lying much clofer, and filling up every part exactly; they are laid in terrafs mortar as well as the reft of the foundation. This being done, the frames made to fupport the gates at the botrom, are laid in their proper places, which are compofed of a fell r, two hurters s, two braces v, and a tong t. The fell enters about three feet into the fidewalls, and the fockets to receive the pivots of the gates are placed in it; the tong ought to be fo long as to crofs three fleepers, to which it is faftened in a ftrong manner. The fell, tong, and the hurters, ought to have the fame dimenfions, and their height muft be fuch as to be a foot above the laft floor of the fluice, as well as the floor of the chamber; for which reafon, the piles under the chamber are left a foot higher than the reft.

After this another row of lleepers is laid exactly over the firft, and a row of tie beams, fo as to anfwer likewife thofe underneath; which being let into one another, and bolted together as before, and the vacancies between them being filled up with mafonry, and a bed of mortar laid over it, fo as to be even with the upper furface of the fleepers; then a fecond floor is laid, of the fame dimenfions and extent with the former; and when this is done, the fide walls are built in the manner which will be mentioned prefently.

Upon the fecond floor is laid another of two inch thick planks only, which does not enter the wall, in order that it may be repaired when it is wanted. This
laft floor may be made of yellow deal, and its feams muft be well caulked to prevent the water from penetrating through them.

The walls muft be made about three feet higher than the greateft depth of water, to prevent the waves from paffing over them : the facings are made with the largeft ftretchers and headers that can be had, laid in terrafs mortar; and crampt together; the reft of the work is done with good common mortar.

The foundation muft be made larger than the wall, and in proportion to the weight it is to fupport, and the top muft be covered with large flat ftones or bricks fet long-ways laid in terrafs mortar, to prevent the water from penetrating into the mafonry, which otherwife would deftroy it in a fhort time.

When the wall is finithed, a bed of clay is rammed againft it of two feet thick all round the outfide, beginning as low as the foundation, and raifed as high as the wall.

To prevent the water from carrying off the earth by its fall, at the ends of the fluice a falfe floor of fafcines is made of as many fathoms long as the water in the luice is feet high ; this bed or falle floor is funk into the ground as far as is found neceffary; but firft of all a bed of clay is laid, and well rammed, then beds of fafcines are laid long-ways, and faftened with pickets; when the fafcines are nearly level with the floor of the suice, pickets are driven acrofs in rows three feet diftant from each other, reaching a little above the fafcines, and about eaeh row two branches or poles are twifted of about an inch diameter, fo as to crofs each other between the pickets, which being beat down with. 2 mallet, will keep the fafcines very clofe and tight together; the cavities between thefe rows of pickets and branches are filled up with a pavement of hard ftones a toot long, fet long-ways, well beat down, fo as the curfent may not tear them open.

For a greater fecurity; a row of dove-tail piles is driven at each end; and it may be obferved, that both. floors muft have a gradual defcent from the chamber of about a 48 th part of the length, in order that the water may run off clear, when the luice is laid dry and any repairs are wanted to be made.

Aqueducts are fometimes made in the fide-walls: going round the chamber, and coming out before the gates, in order that the water may pals upon occafion. from one fide of the nuice to the other, without being obliged to open the gates; they have a fhutter near each end, that flides in grooves, which are drawn up, or let down, when there is occafion for it. But as wick-: ets are commonly made in the gates, which may ferve for the fame purpofe, unlels on fome occafion where the chamber is required to be left dry, and yet it is abfolutely neceflary that the water thould pals from one fide to the other; we have therefore not marked them in the plan, but they may eafily be made when-: ever it is thought proper.

The crofs-fection fhews the polition of a row of piles, and the fleepers above them into which they are tenon-. ed; the fections of the tie-beams; the floor between them; the fell, and the two floors above it; there is, alfo feen a row of dove-tail piles, broken off in the middle, in order to fee part of the mafonry a, a, be tween the piles and under the neepers. The outfide of. the grates are likewife feen in this fection 3 how theplanks are joined to the frame; the chutters x, x_{3}. and the irons both of the gate and thutters. In the: conftruction of gates, particular care thould be taken, to join the feveral pieces together in fuch a manner, that the whole frame may be as Atrong as poffible, and, not to make them heavier than needs muft be, to pre-: vent their finking, which is not eafily done in large: nuices; nor yet too weak, for fear of their not being able to fuftain the great preffure which is againft them.

The principal frame of a grate confifts of two ftiles or uprights; that which is next to the wall and to which the pivots are fixed, is called the pivot-poft, and the other the chamfered file;' from being edged off on the infide, fo as to make a plain joint with the other gate : thefe two ftiles are joined by two rails which are renoned into them. The other pieces, which are not feen in this fection, but ferve to frengthen the gate, confifts of feveral rails placed not nearer to each other than 24 inches, nor farther than 30°; and offeveral braces which form the fame angle with the pivot-poft as the joints of the planks on the outfide, and they are tenoned into the rails; laftly, of two monions or Mort uprights to form the wickets.
As it is too nice a calculation to find the proper frength of each piecein fuch a manner as may be dependedupon in practice, we fhall give their dimenfions, fuch as are inferted in Mr. Belidor'sworks, and which, he fays, have been taken from thofe moot approved of in practice.

The pieces of the principal trame are generally made of the fame dimenfions; though fome will have the chamfered-file lefs than the:pivot-poft, and the rails to diminifh gradually ; and others fay that the gates fhould be ftronger below than above; on account that the preffure of the water is the greatett there; but as the gates are fupported below by the hurters, that diminition ought rather to begin at-atiour one third difthe height diltant ftom the botcin. However, twe fhall fuppofe the pieces of the principal frame to be of the fame dimenfions, "which are as follows. In all huices from 8 . to 12 feët wide, "the pieces of the principal frames are" to be 8 incthes 'thick, and to broad; the intermediate" rails 6 b'y 8 ; the braces and monions 4 by 6 ; and the whole covered with two-inch thick planks as well as a! the gates of nuices under 37 feet wide.

In nuices which' are from 13 to 18 feet wide, the pieces of the pricipal frame are to be 10 by 12 inches; the intermediate rails 8 by 10 ; the braces and monions

Sect. 3. FORTIFICATION. 295
4 by 6. In fluices from 19 to 24 feet wide, the pieces: of the principal frame are to be 12 by 14 inches; the intermediate rails 10 by 12 ; the braces and monions 5 by 7. In fluices from 25 to 30 feet wide; the pieces of the principal frame are to be 14 by $16 ;$ the intermediate rails 12 by 13 ; the braces and monions 6 by 8. In nuices from 31 to 36 feet wide; the pieces of the principal frame are to be 15 by 17 inches'; the intermediate rails 13 by 14 ; the braces and monions 7 : by 9 . It muft be obferved, that when the gates are very high, the middle rail is made of the fame dimenfions as thofe in the principal frame.

In all luices from 37 to 42 feet wide, the pieces of the pricipal frame are to be 16 by 18 inches; the intermediate rails 14 by 16 ; the braces and monions 7 by 9 ; and covered by planks of two inches and a half thick; or rather with two tows of planks of that thicknefs, in onder that the feams of the under row may be covered by the upper one. Lafty, in all nuices which are from 42 to 48 feet wide, the pieces of the principal frame are tabe 18 by 20 inches; the intermediate rails 15 by 18 ; the braces and nonions 8 by 10 ; covered by planks of two inches and a half thick as before.

It may be obferved, that thefe dimenfions depend on the width of the fuice only; the depth of the water has not been confidered, though it fhould have been done; fince the greater that depth is, the preffure is likewife the greater, when the reft is the fame; confequently the dimenfions here given mult be increafed in great depths, and diminifhed in fmall ones.

As to the number and frength of the irons in the gates of a nuice, they ought to be in proportion to the kargenefs and weight of the frame; the principal ones in fimall luices are reduced to two ftraps, which ferve to bind the under and upper rails to the pivot-polt, which they embrace on both fides; they are let into the wood, fo as to be even with the furface of the gate, and faltened with 5 or 6 iron bolts riveted with burrs, or with
rings and keys; the length of thefe ftraps ought to be about one third of the width of the gate. Sometimes the chamfered-file is bound to the rails above and below, with ftrait ftraps like the former, but oftener with beent ones; fuch as are reprefented in the fection, one on each gide, bolted together in the fame manner as the former.
,When the gates belong to a large nuice which contains a grear depth of warer, she middle rail is likewife bound tothe pivot-poft, and the chamfered-ftile by two fraps in the form of a T, both within and without, bolced together as before; and when the gates are very large, two ftraps are ufed to faften the upper rail to the pivor-poft, becaufe the greateft ftrefs lies in that part ; and to fecure it fill more, another ftrap is bolted upon the edge of the upper rail, and bent againft the pivotpolt; this laft ftrap is of grater ufe ta keep the gate from finking than any other, far which reafon, it is feldom omitted, whether the gates be fmall or large:

The various concrivances that are made to open and thut the gates, require fome notice to be taken of them; but as in fo frmall a work as this, it is not poffible to give a compleat defcription of every particulan part; : they therefore mult be left to the fagacity and prudence of the builder:- It muft be obferved that as the wickets are made to let the water into the chamber before the gates are opened, in order to eafe them from the great preffure of the water on the outfide; there feems to be no reafon for placing them fo low, nor fo far from the pivot pof as is commonly done; for provided they are low enough to let in fo much water as will rife to the fame level within as it is without, it will be fufficiunt; confequently the lower part of the wickets Should never be below the middle height of the water without, whereby the weight of the irons will be diminifhed. And the nearer the wickets are to the pivotpofts, the leis the preffure would be upon the gates, when the wickets are to be opened; befides, all poffible
means thould be ufed, to lighten the farther end of the gates," to prevent their finking, which they will do neverthelefs, efpecially when they are large: this however may be remedied, by placing brafs-cafters under them, at above two thirds of their width from the pivotpoft ; but then a piece of timber muft be placed upon the foor, of a circular form, for the roller or cafter to move upon.

Sometimes the gates of large fluices are made in the form of a part of a cylindric furface, whofe bafe is a twelfth part of a circle; this is done in view toftrengthen the gates againft the preffure of the water; in fuch a cafe the curve of the rails mult be natural, and according to the grain of the wood, otherwife the gates will become weaker inftead of being ftronger ; fince a fcantling cutacrofs the grain of the wood will always be weaker than any other of the fame dimenfions, and the fame kind of timber.

Various methods are ufed to fhut fuices under twenty. four feet wide : in fluices from ten to fifteen feet wide, a fingle gate is made, which is fometimes opened by means of a capftane; at others the upper rail of the gate is made fo as to go beyond the pivot-poft, and from rhence made much thicker and heavier, to be a kind ofa counter-balance to the gate; the end of which being preffed downwards by feveral people, and then turned round, opens the gate eafily.

Sometimes fingle gates are ufed of a much larger fize than the former; thefe gates have their pivot-poft nearly in the middle; fo that the largeft part of it turns towards the ftream when the gate is to be opened, and the leaft the contrary way. The pivot-poft muft be placed in fuch a manner, that the preffure of the water againft the largeft part may keep the gate fint clofe, and at the fame time that there may not be too great difficulty to open it. It has been found by experience that when the preffure againft the largeft part exceeds that againgt the leffer by one fixth part, it is fufficient $;$ whence
whence it is eafily proved from the known principles of hydroftatics, that if the width of the fmalleft part is to the width of the largeft, in the proportion of 12 to 13, it will anfwer the faid proportion of the preffure.

Thefe gates are certainly the moft convenient that can be; but as there mult be laid a ftrong timber acrol's the nuice to fupport the upper pivot, no veffels that have mafts can pafs through them ; for which reafon, they cannot be ufed but in fluices that ferve to keep up the water for raifing an inundation, or in thofe that are built at the entrance of a canal, which runs into a harbour, for the fake of clearing and carrying away the fand and fingle that have been driven in by the tides.

Wickets have been made in this manner, and found very convenient; becaufe the great preffure of the water againft the common fort, makes their opening very roublefome; wheneas this fort are opened and hut with greac eafe, and very little labour.

Somecines nuices:are made in fortreffes at the fide of ftone-bridges; this is done by making the piers to projeet beyond the bridge, and in the projected part cullifes are contrived fo as to let down fquare timbers, which being kept clofe and tight, the water may be raifed to any height: in fhort, many other forts of nuices are made upon various occations, which, it would be inconvenient to mention in this work.
Of AQUEDUCTS.

The intent of aqueducts is generally to bring water from a fpring or river to a town, but they are likewife ufed to carry canals over low ground, and over brooks or fmall rivers: they are built with arches like a bridge, only not fo wide, and are covered above by an arch toprevent duft or dirt from being thrown into the water. The ancient Romans were remarkably curious in thefe forts of works, for they not only fupplied all the parts of Rome with water for common ufes, but likewife for a great number of public baths; and that nothing might

Sect.-3. FORTIFICATION. 299
be wanting, created a public magiftrate, whofe only bufinefs was to take care of them, either to repair thofe already made, or to conftruct new ones where they were wanted; fometimes the fame work ferved for both a bridge and aqueduct; then the water was led through two covered canals, one on each fide of the road, for carriages.

As thefe kinds of aqueducts differ very little in their conftruction from common bridges, of which we have treated before, we fhall not enter into any paticulars here concerning them; but when a canal is to pars through a country croffed by rivers, it mult be obferved how high, in refpect to the bottom of the canal, the water rifes at the time of its greateft flood, in order to: know whether thefe waters can be carried under the bottom of the canal by means of aqueducts, and have yeta: fufficient declivity to run off.

The fame thing is to be obferved in regard to thofe arifing from the rains and the melting of the fnows, which when led into a ditch made along the higheft fide of the canal, may from thence be carried off to the other fide underneath the canal: Thefe waters fhould never be carried into the canal, unlefs it be impracticable to do otherwife.

It requires great precaution, as well as circumfpection, in determining the place of aqueduets, fo as to give them fufficient room whenthey have but one paffage; which is to be widened at the entrance, and at the outlet in a proper manner? if there is not a fufficient depth to conftruct one of fuch a bignefs, as the quantity of water that is to pafs requires, two or more paffages muft be made at the fide of each other, to prevent an inundation, that otherwife might enfue; bat it muft be obferved, to make them in fuch a manner as to be eafily cleared from the fand and mud depofited there by the water, for want of its having a fufficient velocity.

Therefore,

Therefore, when the water on both fides is nearly level with that in the canal, it muft be avoided as much as poffible, to make the aqueduct in the form of a fyphon, in order to carry the waters under the bottom of the canal; but rather to let the water into the canal on the higheft fide, and out on the other, by means of fmall fuices with fhutters.

When the waters are below the bed of the canal, it is carried over them by means of an aqueduct, in the form of a bridge with feveral arches, through which the water paffes; there are many of this kind in the famous canal of Languedor. In this cafe, after having determined the interval between the two abutments, according to the quantity of water that is to pals through the arches in the time of the greateft flood, and agreed on the number of arches, in refpect to the width it is convenient they hould have, fo as not to multiply the number of piers without neceflity, for fear of diminithing the paffage of the water; in hort, after: having taken all the neceffary precautions, in confequence of the level of the canal, to determine the height of the arches, and their thicknefs at the keyflone:; then the parts between the arches are filled with good mafonry to make the upper part level, and a bed of cement is laid all over, with the fame care and manner as has been explained in the fection where we have treated of under-ground arches, to prevent the water of the canal from penetrating through any part of the arches, which orherwife would deftroy them in a fhory cime, were this precaution not ufed.

The width of the aqueduct mult be fuch, that the largeft veffel ufed may pals conveniently; or if the canal is much frequented, it ought to be fuch, thak iwo or more, veffels may pafs a-brealt; and at the fides paffages are alfo made for the horfes which draw the vefiels:

When the furface of the waters is nearly level with the bottom of the canal, the aqueduct mult be lower in
|

Sect. 3: FORTIFICATION.
the middle than at the ends; in fuch a cafe, cefs pools mult be made on each fide, of fufficient depth and breadth, fo that the water may run in firft there, to fettle and depofite its mud, before it paffes through the aqueduet; but this fhould never be done when it is poffible to do otherwife, by placing the aqueduct either fomething higher up the canal, or lower down.

Befides thofe kinds of aqueducts we have mentioned already, there are others placed on the tops of hills, which ferve as a refervoir for water to be from thence carried through pipes into gardens to make water-works for pleafure : and the water is brought into them, by means of pumps and other engines; the molt famous one of this fort, in Europe, is that at Marly; and as it is admired by all travellers that have feen it, the reader will perhaps be pleafed with a defcription of it, which we have made upon the fpot, in company with fome acher gentlemen.

The length of this famous aqueduct is 400 yards, and fupported by 3^{6} arches; its greatelt height is 82 feet, and loweft 75 feet, fo that the flope of the canal is about 7 feet from the higheft part to the loweft; the width of the arches is 8 yards, and the height of the higheft 52 feet, the breadth of the piers is equal to the width of the arches, that is 8 yards, and their thicknefs 5 yards below reduced to 7 feet above, becaufe the building has a llope on each fide; the walls which inclofe the canal of the water are each a foot and a half thick, and an arch goes over it; fo the canal is about 4 feet wide, and about the fame beight in the middle.

This aqueduct is 5 co Frencb feet above the furface of the river Seine, and at 1220 yards diftance from it: as this height is too great for a fingle fet of pumps to force the water up at once, let them be ever fo ftrong; it has therefore been divided nearly into three equal parts: the firft fet of pumps raifes the water to a height of 150 feet, the next fet, which is 300 yards diftant from the river, raifes it 175 feet, the third fet, which
is 648 yards from the river, raifes the waier up to the aqueduct, that is 175 feet more.
From this aqueduct, two pipes of 18 inches diametef lead the water into a bafon at Marly, and from thence it goes to the feveral fountains in the garden; there is likewife another pipe of 8 inches diameter that leads the water from the aqueduct to Verfailles.

There are 253 pumps employed to farce the water up to the aqueduct, and from the laft fet it is carried up by 6 pipes, each being 8 inches in diameter thequantity of water raifed formerly in a day was 779 cubic fathoms, but at prefent, it raifes fcarcely above half that quantity; which may be owing to fome decay in the machine, or neglect in its repair.

Notwithftanding the wounderful contrivances of the author (one Ranequin of the country near Liege) in the difpofition of the feveral parts of this machine, yet many pretended judges find fault with it; though none of them are capable to invent a new one that can be compared to this; but it is cuftomary amonget the prefent virtuofi, to find fault with the performances of their matters, and think themfelves better fkilled than thofe they can barely imitate.

But amongft the critics of this wounderful machine, I except Mr. Belidor, who has really fhewn fome defects in the bodies of the pumps, and at the fame time, how they might be amended: and as he has given a full defcription of it, together with proper plans and fections, we refer the reader to his works for a full account of this machine, which we have only mentioned, as being partly connected with the aqueduct, the defcription of which alone we propofed to give here.

$$
F I N I S
$$

BOOKS Printed for and Sold by A. Mitiar, over-againft Catharine-Street in the Strand, London.

1. A SYS TEM of Mathematicks, Fortification, and Artillery. In 6 vols. Illuffrated with above one hundred Copper-plates. By John Muller, Profeffor of Artillery and Fortification.
2. The Doatrine of Chances: Or A Metbod of calculating the Probabilities of Events in Play. The Third Edition, Fuller. Clearer, and more Correct than the former, being enlarged One Third more.
3. Mifcellanea'Analytica de Seriebus et 2uadraturis. Cum Supplemento.
The above two by Abrabam de Moivre.
4. An Account of Sir IJaac Newton's PbiloJophical Difcoveries. In Four Books. By Colin Mac Laurin, A. M. Hate Fellow of the Royal Socitç, Profeffor of Mathematicks in the Univerfity of Edinburgh, and Secretary to the Philofophical Society there. Publihed from the Author's MSS. Papers. To which is added, An Account of the Life and Writings of the Author. By Patrick Murdoch, M. A. and F. R.S.
5. Geometria Organica: Sive Defcriptio Linearum Curvarume Univerfalis. Auctore Colino Mac Laurin.
6. A Treatife of Fluxions. In two Books. By Colin Mac Laurin, A. M. Profeffor of Matbematicks in the Univerfity of Edinburgh, and late Fellow of the Royal Society. 2 vols.
7. Mercator's Sailing, applied to the true Figure of the Earth. With an Introduction concerning the Difcovery and Determination of that Figure, By Patrick Murdoch, A. M. Rector of Straddijhall in Suffolk.
8. The Elements of Alsebra, in Ten Books. By. Nicholas Saunder fon, L L.D. late Lucafian Profeffor of the Matbematicks in the Univerfity of Cambridge, and F. R.S. To which are prefixed, 1. The Life and Character of the Author." 2. His Palpable Arithmetick Decyphered. In 2 vols.
9. A Letter from an Ufficer to his Friend, upon the Methods of training Infantry for Action. Confifting of ObServations, \&c. upon fome parts of the prefent Field-Day Exercife ; and Propofals for foine Alterations and Additions therein. With feven Copper-Piates, to explain the Evolutions, and Methods of forming and exercifing Battalions, that are propofed.

B-O KS Printed for and Sold by A'Mil Lar:

 - 30. A Treatife on Ship-building and Navigation. Inthrree Parts, with an Appendix, and 18 Copper-Plates. By Maungo Murray, Shipwright.11. Effay on the Art of War; in whieh the general Prin:ciples of all the Operations of War in the Field are fully explained, under forty five-diftinct Heads, viz. Of the Art of War-Of levying Troops-Of the Qualities of Officers-Of the Exercife of Troops - Of Artillery and Engineers - Of Difcipline, Punihments, and Rewards-Of Camps, Convoys, Foraging, Parties, Amburcades, Skirmihes, and Marches-Of Orders of Battle, Battles, Retreats, Cantonments; 'Winter Quarters, \&c. \&cc. \&cc. The Whole compiled from the beft Authors on the Subject. A New Edition. By Fames Anderfon, Efq; Lieutenant Colonel in the Service of Portugal.
12. The Figure of the Earth determined from Obfervations made by Order of the French King at the Polar Circle: By Meffieurs De Maupertuis, Camus, Clairaut, Le Monnier, Members of the Royal Academy of Sciences; the Abbé Outhier; Correfpondent of the Academy; and Mr. Celfuss, Profeflor of Aftronomy at $U_{p} \rho a=$. Tranlated from the French of M. De Maupertuis.
13. Neutoni Gene/sis Curvarum per Umbras, feu Perfpective Univerfalis Elementa; Exemplis Coni Sexionum © Linearum Tortii Ordinis Illuftrata.
14. Pbilofophia Moralis Infitutio Compendiaria Libris III. Ethices et Jurifprudentix Naturalis Elememta continens. Auctore Francifo Hutchefon in Academia Glafguenfor, P. P. Editio altera auctior \& emendatior.
15. Euclid's Elements of Geometry, from the Latiu Triannation of Commandine. The 7th.Edition. By Samuel e/ennin.
16. Euclid's Data reftored to their True and Genuine.Order, agreeable to Pappus Aliexandrinus's Account of thetm,' in his, Preface to the Seventh Book of his Mathematical ' Collogtions, By Richard fack, Teacher of Mathematicks.
17. Select Parts of Profeffor Saunderfon's Elements of Algebra, for the Ufe of Students at the Univerfities.
18. Lectures on Select Subjects in Mechanics, Hydroftatics, Pneumatics, ap̣d Opticiss ; with the Ufe of the Globes, the Art of Dialling, and the Calculation of the mean Times of New and Full Moons and Eclipfes, By, Fames. Fergufon.
19. A Treatife of Decimal Arithmetic ; or, Decimals applied in the common Rules of Arithmetic. By R.Gadby, Writing-Mafter and Accomptant.

Digitized by $\mathrm{GOOg} l e$

[^0]: a 3
 ufeful

[^1]: Tables. Containing the dimenfions of girders, $\quad 70$ Containing tbe dimenfions of oak and fir timpers,

