Über dieses Buch

Dies ist ein digitales Exemplar eines Buches, das seit Generationen in den Regalen der Bibliotheken aufbewahrt wurde, bevor es von Google im Rahmen eines Projekts, mit dem die Bücher dieser Welt online verfügbar gemacht werden sollen, sorgfältig gescannt wurde.

Das Buch hat das Urheberrecht überdauert und kann nun öffentlich zugänglich gemacht werden. Ein öffentlich zugängliches Buch ist ein Buch, das niemals Urheberrechten unterlag oder bei dem die Schutzfrist des Urheberrechts abgelaufen ist. Ob ein Buch öffentlich zugänglich ist, kann von Land zu Land unterschiedlich sein. Öffentlich zugängliche Bücher sind unser Tor zur Vergangenheit und stellen ein geschichtliches, kulturelles und wissenschaftliches Vermögen dar, das häufig nur schwierig zu entdecken ist.
Gebrauchsspuren, Anmerkungen und andere Randbemerkungen, die im Originalband enthalten sind, finden sich auch in dieser Datei - eine Erinnerung an die lange Reise, die das Buch vom Verleger zu einer Bibliothek und weiter zu Ihnen hinter sich gebracht hat.

Nutzungsrichtlinien

Google ist stolz, mit Bibliotheken in partnerschaftlicher Zusammenarbeit öffentlich zugängliches Material zu digitalisieren und einer breiten Masse zugänglich zu machen. Öffentlich zugängliche Bücher gehören der Öffentlichkeit, und wir sind nur ihre Hüter. Nichtsdestotrotz ist diese Arbeit kostspielig. Um diese Ressource weiterhin zur Verfügung stellen zu können, haben wir Schritte unternommen, um den Missbrauch durch kommerzielle Parteien zu verhindern. Dazu gehören technische Einschränkungen für automatisierte Abfragen.
Wir bitten Sie um Einhaltung folgender Richtlinien:

+ Nutzung der Dateien zu nichtkommerziellen Zwecken Wir haben Google Buchsuche für Endanwender konzipiert und möchten, dass Sie diese Dateien nur für persönliche, nichtkommerzielle Zwecke verwenden.
+ Keine automatisierten Abfragen Senden Sie keine automatisierten Abfragen irgendwelcher Art an das Google-System. Wenn Sie Recherchen über maschinelle Übersetzung, optische Zeichenerkennung oder andere Bereiche durchführen, in denen der Zugang zu Text in großen Mengen nützlich ist, wenden Sie sich bitte an uns. Wir fördern die Nutzung des öffentlich zugänglichen Materials für diese Zwecke und können Ihnen unter Umständen helfen.
+ Beibehaltung von Google-Markenelementen Das "Wasserzeichen" von Google, das Sie in jeder Datei finden, ist wichtig zur Information über dieses Projekt und hilft den Anwendern weiteres Material über Google Buchsuche zu finden. Bitte entfernen Sie das Wasserzeichen nicht.
+ Bewegen Sie sich innerhalb der Legalität Unabhängig von Ihrem Verwendungszweck müssen Sie sich Ihrer Verantwortung bewusst sein, sicherzustellen, dass Ihre Nutzung legal ist. Gehen Sie nicht davon aus, dass ein Buch, das nach unserem Dafürhalten für Nutzer in den USA öffentlich zugänglich ist, auch für Nutzer in anderen Ländern öffentlich zugänglich ist. Ob ein Buch noch dem Urheberrecht unterliegt, ist von Land zu Land verschieden. Wir können keine Beratung leisten, ob eine bestimmte Nutzung eines bestimmten Buches gesetzlich zulässig ist. Gehen Sie nicht davon aus, dass das Erscheinen eines Buchs in Google Buchsuche bedeutet, dass es in jeder Form und überall auf der Welt verwendet werden kann. Eine Urheberrechtsverletzung kann schwerwiegende Folgen haben.

Über Google Buchsuche

Das Ziel von Google besteht darin, die weltweiten Informationen zu organisieren und allgemein nutzbar und zugänglich zu machen. Google Buchsuche hilft Lesern dabei, die Bücher dieser Welt zu entdecken, und unterstützt Autoren und Verleger dabei, neue Zielgruppen zu erreichen. Den gesamten Buchtext können Sie im Internet unterhttp://books.google.com durchsuchen.

This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

Google books

https://books.google.com

íx,

$$
156014019
$$

THE

Art of Shooting Flying
EXPLAINED.

(10)

H E

Art of Shooting Flying:

Familiarly explain'd by way of
D I A L O G U E. CONTAINING

Directions for the Choice of Guns for various Occaflons,

An Account of divers Experiments, difcovering the Execution of Barrels of different Lengths and Bores.

With many ufeful Hints, for the Improvement of Young Practitioners, entirely new.

By T. P A G E.

The Second Edition, with Additions.

$$
\mathrm{N} O \mathrm{O} W \mathrm{I} \mathrm{C} \mathrm{H}:
$$

Printed by J. CROUSE, Sold by the Author, and by
E. Johnson, Bookfeller in Ave-Maria-Lane, London. m.dcc.lxifi.
\because [Price One Shilling.]

Advertifement.

THE Author is obliged for the favourable opinions he has received from many experienced fportfmen of the firft edition of this Pamphlet; and, at the requeft of feveral, has here added fome account of the compofition and qualities of Gunpowder; alfo a method of finding the relative velocities of fhot from guns of different lengths and bores to one another, and their abfolute velociries; fo that the goodnefs of barrels, in regard to carrying the fhot with force, needs be no longer a difputable point; as every one will hereby be enabled to prove it with as much exactnefs as he can defire.

Here is an account of various experiments made for that purpofe: alfo the refiitance

ADVERTISEMENT.

refiftance of the air is confidered on fhot. of different fizes. He has avoided any algebraic fymbols, thinking it better for the ufe of the greater part of his readers to write, inftead of fuch marks, words at length; and hopes he has explainedthe whole in fo eafy a manner, as will be comprehended by thofe who are not acquainted with mathematical operations.

He has publifhed the following letter, as the gentleman feems to differ from him in regard to the fize of fhot; which point, he hopes, is fatisfactorily difcuffed at the latter end of the appendix, where he treats on the refiftance of the air on different furfaces.

THEARTOF

SHOOTING FLYING

EXPLAINED.
INA
DIALOGUE

BETWEEN
AIMWELL and FRIENDLY.

> FRIENDLY.

R. Aimwell, your fervant. I think it is as great a rarity to find you abroad as it is to find fome people at home. And yet you often talk of Thooting; but I don't fee when you find leifure .

AIMWELL.

The nature of my bufinefs, Sir, requires as much application of my hands as poffible. Tis
 true lam fond of fioong, and peghaps the more fo as the exacrife, has been of great ure to met, in carrÿnd of fome diforrders which ate frequently the confequence of too clofe application to a fedentary bufine ths: "Yo" that 1 think four or five hours in a aryeek, fpent in this- diuerfion is not thrown dway, as it 'feems to give new ligotir' to the animal Spritits, and enables me to return to bufinefs with'greatér chèarfillnefs.'-

FRIENDLY.

What yon fay; foems wery reafonable. I have thought for fome time, a little of this exercife might afford me the like relief from fudy, as it does you from bufinefs; fo that I have now
 am come with a defign to purchafe a gun of you.

A \ddagger MWELL

Sir, I much commend your prudence in confute ing your father, and waitipg for his approbation ; it. feems to promife that you vyill not abufe this indulgence to the hindrance of your fudy, or the hurt of your confitution y for moft things, and even the beft, may, and do often become detrip mental when ufed to excefs.

$$
F R I E N D L_{t} Y \text {. }
$$

I think myfelf obliged for this bint, which thall not.be loft on me. But thave fomething more

SHOOTING FLYNG EXPLAINED. 3.

oclaim froman old promife, which I hall efteem, a particular fayour; that you will give me fome inftructions in the art of fhooting flying, that I may be able to ufe the intrument I am going to purchafe, to your creditas well as my own.

A'IM W ELL

Sir, the refpect I bear to you and your family. will readily difpofe me to any thing in my power to ferve you. And as you are come to fpend fome weeks here, now the fhooting feafon is juft coming on, I don't doubt but, if you will fubmit yourfelf intirely to my directions, I hatl put you in a method by which you may with practice become a markfman.. Butt to attain that muft be a work of time. I affure you, from the little leiture I had to practice, it was ten years before I became a tolerable marlfman: tho'; indeed I had not the advantage of a good inctructor, : But from the experience I have had, I hope to put you in a readier way to this attainmenf.

FRIENDLY.

I. Thall be greatly obliged to you. But as to the gun, what length of barret would you advife to begin with?

AIMWELL.

It is neceffary for any gentleman who fports much to have two guns: the barril of one about B 2

THEARTOF

two feet nine inches, which will ferve very well for the beginning of the feafon, and for woodfhooting: the other about three feet three inches, for open-Thooting after Michaelmas: the birds by that time are grown fo hy, that your thoots mult be in general at longer diftances. But if you intend one gun to ferve for all purpoles, then a three feet barrel (or thereabouts) I think mont proper.

FRIENDLY.

I have heard fome of my acquaintance talk of guns of two feet fix inches in the barrel that will kill at fifty or fixty yards. Nay, I heard one affert, that he threw fix thot into a quarter of a theet of paper at a hundred yards diftance.

AIMWELL.

Well, Sir, I am not fupriz'd you have heard of thefe great things. 1 am frequently told ftories to the fame purpofe. But there is nothing gentlemen feem more prone to than impofing on themelves and others in the diffances they fhoot at, I know you have a tafte for mechanical experiments, and therefore don't doubt but you will make ufe of that way of reafoning, as a ftandard to regulate your judgment at firft fetting oirt, in this as well as other branches of knowledge And tho' in this art every thing will not admit of mathematical demonfration; yet I hall not demand

SHOOTNG MLYING EXPLAINED. 5

mand your affent; but as it thall appear reafonable from experiments; and hope you will not sorget fomething that is fimilar to it when you become a teacher of men. If you can call on me by fix in the morning, I will attend you to 2 proper place, and try fome experiments with guns of different lengths, to give you a fufficient idea of what can be done by guns in general, and to prevent your being impofed on by every idle prater on this head.

FRIENDLY.

I am already obliged for the favour of this converfation, and will attend at your time: 'till when, adieu.

AIMWELL

Your fervant.

Dialogue II.

FRIENDLY.
 G OOD-MORROW, Mr.
 AIMWELL.
 Sir, I hope you are well. You are very punctual, to be here rather before the time appointed. FRIENDLY.

6. THEART OTM

F:RIE:NGL.Y.
\because I knew you were an early rifer, and am shds firous you hould think me diligent to receive yonet inftructions: but am ready to wait your, leifinte i

AIMWELL.

Sir, it gives me pleafure to find you fo alett? for as to fluggards, there is nothing to be made of them. But come, Sir, I am ready. Ifee yout have brought your fervant with you, whofe attendance may be ufeful: and I have a man who is a very good hand at fhooting at a dead mark. For my part, I am not fond of it: for guns feem to recoil more at a fixed mark than at a Hying object; and I am apt to lay my face fo clofe, as to get a fnart blow on the cheek-bone, efpecially if the barrel lies two ftraight in the ftock. I have chofe out feveral guns, from two feet fix inches to three feet fix inches, which I think is the greatef variety requifite for fhooting flying. And here comes my man with a quire of large brown paper, chalk, a hammer, and nails. Pleafe to let your fervant take fome of the guns, and pen, ink, and paper, for you to take down what I fhall direct.
FRIENDLY.

Is it far to this Place?

AIMWELL.

SHOOTING•FLYNG EXPLAINED.
 9

We are juft bỳ it , you fee niyi man, who went before, is nailing up a theet of paper, and has chatletd a place in the middle of it to take ainchat.

ERHEDLY.

But pray of what ufe are thofe long fplines?

AIMWELL.

They are two ten feet fplines, for the greater eafe and exactnefs of meafuring the diftances we fhall try the guns at. He has meafured the dif. tance of fix fplines, and put down a mark there for twenty yards. Now, Sir, if you will pas over this diftance two or three times, till you cad do it pretty exactly at twenty paces, and the fame when he has meafured thirty, forty, and fifty yards, it will be of "great ufe to you' by and by, to learn to judge of the true diftances you thoot. at ; and therefore you may practice the fame as often as you have opportunity.

FRIENDLY.

Pray what is your method of loading? I have been told that gunfmiths in general put in a large quantity of fmall fhot, to make them fill the paper well that they fhoot at.

AIMWELL,

THE ARTOF

AIMWELL.

'Tis very true, indeed, they are often obliged 10 it , when gentlemen won't be fatisfied with what is reafonable for a gun to do; and it is a common practice in this country to load with a pipe-bowl of powder, and a bowl and a half of thot; and when they find they can't kill often, think they don't put thot enough, fo put in more, and are obliged to leffen the quantity of powder to prevent its recoiling; not confidering this axiom, " that action and re-action are equal"- that upon difcharge of powder the gun is forced back, as the thot is forwards, in proportion of the weight of thot to the weight of the gun; fo that by putting in a larger load of hot, and lefs powder, you will be ftruck more, and the bird you fhoot at lefs: fo that tho you put many fhot into the bird, they will not have force enough to kill, unlefs at a very fhort diftance. I have. been told by a gentleman, who is reputed to fhoot very: well, that when he is difpofed to kill at very long thoots, he puts in a lef's quanity of hot than of powder, becaufe he thus finds them more efficacious. But if lefs of thot than powder will carry the fhot clofe enough for long fhoots, they will certainly fly thick enough at fhorter diffances. To avoid the extremes, I ufe the beft powder ${ }_{\text {a }}$ and put in equal meafures of that and thot, which in weight is nearly as one to feven, but ufually prime out of that quantity. To a barrel of a midale-fized bote, whofe diameter is about five-

SHOOTING FLYING EXPLAINED.

five-eighths of an inch (which I look upon to be the beft fize for fhooting flying) I put in two ounces of thot, No. 4. which are about 200 in an ounce, and an equal meafure of powder. This is the charge I ufe in the field, and fhall make ufe of the fame in our trial: for it is prepofterous to make ufe of a load expected to make a better fhoot at a mark, than when you defign to kill a bird.

FRIENDLY.

And what fort of wadding do you beft approve of? I have heard fome fay that tow is beft; others cards ftamped, to fit the fize of the bore.

AIMWELL.

'Tow, I think, is uncertain. If cards be ufed, the end of your rammer muft be almoft as broad as the barrel will admit of, to go down free, and quite flat at the end, to prevent the card from turning; and muft be pufh'd down gradually, to give time for the air to pafs, otherwife it will be troublefome. This is therefore not the quickeft way. Old hat may be ufed in the fame manner, which is rather better: and fome fay leather fhreds are beft. But I cannot yet find any ting better, or fo ready, as thin brown paper, rubbed foft, and cut into pieces about one inch broad and two inches long; fo that when it is once doubled, it is an inch fquare. I punch a C
fmall hole at the corner of each piece, pur a fufficient quantity upon a key-ring, hang them into my button-hole, and tear off one as I want it. 'This being doubled, put it to the muz-' zle, and clofe the corners up about your rammer (the end of which ought to continue of the fame bignefs for at leaft half an inch, or rather fomewhat fmaller juft at the end) and thruft the paper thus put into the barrel gently down uponthe powder. Your rammer will come back without danger of drawing the paper back, and will leave it clos'd againft the fides of the barrel, like a half cartridge. Put another in the fame manner after the fhot. When your gun is quite clean, it is neceffiry to put in a fecond wad after the fhot, to prevent its getting loofe.

FRIENDLY.

Do you ram your fhot as much as your powder? I think I have heard fome that pretend to experience fay, that they ram the powder well but not the fhot. What is your opinion of this?

AIMWELL.

After fome experience you will find, if your gun is clean, and the wad thruft but lightly down, that in walking the fhot will be apt to get loofe: and if you dicharge the piece in that ftate, it wit feem, by the fmall refiftance it makes, as if there were no hot in it: and if you try one load.

SHOOTING FLYING EXPLAINED. if

pretty fmartly rammed over the fhot, and another with the wad thruft but lightly down, at a quire of paper, you will find the charge that is rammed will penetrate deepeft, and that the fhot will fly as regularly as the other which is not rammed.

FRIENDLY.

Well, Sir, it feems rational enough; and I fhall follow your counfel, and try it the firf opportunity, becaufe I think it a point neceffary to 'be thoroughly convinced of.

AIMWELL.

The gun two feet fix in the barrel is loaded; you fee I have got a reft to be the more exact in our trials: fire it at twenty yards.-W.Well fhot. \rightarrow Bring the paper this way, and draw three or four lines acrofs it with your chalk there. By this means you may eafily count the fhot-holes; which pleafe to do, whilf I load it again, and put down, ---The gun two feet fix inches long, the barrel fix tenths and a half diameter, weight two pounds faurteen ounces, and weight of the whole gun fix pounds two ounces.

The firf flotat 20 yards	
Second at ditto	$-220\}^{\text {Medium } 208}$
Firf of ditto, at 30 yards	1043
Second at ditto	$84\}$
C 2	

Firft of ditto, at 40 yards
Second at ditto
Firf of ditto at 50 yards $\begin{array}{lll}\text { Firf of ditto at } 50 \text { yards } \\ \text { Sceond at dito } & 164 \\ -\end{array}$
$35\}$ 235

By the fhoots made with this gun, you may eafily perceive it is difficult to make two thoots alike: and th refore no certain judgment can be made of its goodneis by two or three flcots. For in? ance, the fhoots here made at forty yards, are not much above half the number of thot there ought to be in proportion to thofe at twenty and fifty yards, as you will fee upon further trials.

No. 2. A barrel two feet nine inches, weight three pounds two ounces, weight of the whole gun fix pounds five ounces; bore, fix tenths and a quarter.

The powder and thot took up two diameters and three quarters each in the barrel.

No. 3 .

SHOOTING FLYING EXPLAINED is

No. 3. Of a gun whofe barrel is three feet long, and two poinds fifteen ounces weight, the bore is fix tenths and a half of an inch diameter, and is nearly a cylinder, 'till within three inc'ses of the muzzle, which is opened a little; the weight of the whivle gun five pounds thirteen ouncer.
$\left.\begin{array}{lll}\text { Firft fhot, at twenty yards } & 238 \\ \text { Sucond, at dito } & -220\end{array}\right\}$ Medium 229
Firf, at thirty yards "- 483 Second at ditto - - 60$\}$
$\left.\begin{array}{llll}\text { Firf, at forty yards } & - & 36 \\ \text { Second, at ditto } & - & 50 \\ \text { Tuird, at dition } & - & 40 \\ \text { Fourth, at ditto } & - & 86\end{array}\right\} \quad . \quad 53$
$\left.\begin{array}{lll}\text { Firft, at fifty } & 40 \\ \text { Second, at ditto } & - & 46\end{array}\right\} \quad 43$

No. 4. Of another gun, barrel three feet long, and fix tenths and three quarters diameter; weight three pounds three ounces; and whole weight of the gun fix pounds fix ounces.
$\begin{array}{ll}\text { Firft fhot, at thirty yards } & \left.\begin{array}{l}120 \\ \text { Second, at ditto - } \\ 130\end{array}\right\} \text { Medium } 125 .\end{array}$
$\left.\begin{array}{lllr}\text { Firft, at } 40 \text { yards } & - & 45 \\ \text { Second, at ditto } & - & 46\end{array}\right\} \quad-45$

14 THEARTOF

No. 5. Of a gun the barrel three feetand two inches long, the bore fix tenths and three quarters diameter; two ounces of thot loaded it, two diameters, and the fame quantity in meafure of powder; weight of the barrel three pounds twelve ounces; the whole gun feven pounds three bunces.

No. 6. Of a gun three feet fix inches the barrel, weight three pound iix ounces; weight of the whole gun fix pounds eight ounces; two ounces of thot, and the fame quantity of powder loaded it, two diameters of each.

SHOOTINE FEYING EXPLAINED. 15
$\left.\begin{array}{llll}\text { At thirty yards } & - & - & 146 \\ \text { Ditto } & - & - & 177 \\ \text { Ditto } & - & 116 \\ \text { Do. without wad over the fhot } & 154\end{array}\right\}$ Med. 148

No. 7. A barrel three feet three inches long; weight three pounds twelve ounces, tried in a rough flock.:

No. 8. Another barrel three feet three inches long, weight three poumds feven ounces, and was fine bored ; tried in the rough flock.
$\left.\begin{array}{lllr}\text { At forty yards } & - & - & 94 \\ \text { 1)itto } & - & & 100^{\prime} \\ \text { Ditto, with hat-wad } & - & 99\end{array}\right\}$ Med 97

[^0]

- No. ro. A real Spanifh barrel three feet eight inches long.
\(\left.\begin{array}{lcccr}At thirty yards \& - \& - \& 110

Ditto \& - \& - \& 96\end{array}\right\}\)| Med. 103 |
| ---: |
| At forty yards |
| At fifty yards |

The owner of this gun thoots well, and he fays he frequently kills with it at feventy yards; but unlefs he put in more powder and fhot, I think. there is but little chance for killing at fifty yards with any certainty.

No. 11. One ditto three feet two inches, feven tenths diameter.
At forty yards
At fifty

No. 12. A four fẹet barrel, fix tenths and a half diameter.
$\left.\begin{array}{llll}\text { At forty yards } & - & 84 \\ \text { Ditto } & - & - & 58 \\ \text { Ditto } & - & 73\end{array}\right\}$ Med. 77

Ditto, after cutting eight inches off the barrel.

Upon

SHOOTING FLYING EXPLLAINED.

Upon fuppofition that a gun lofes half the quantity of thot every ten yards, (and it appears from the experiments to be nearly fo) this gun has loft about 2 yard diftance in killing, to one inch taken off from the length of barrel: but the difference of the force with which the fhot was thrown was fcarcely diftinguifhable.

No. 13. The fecond-beft barrel, three feet three inches, Spanifh farhion, fixed into a block.

At forty yards	-	-	$7 \mathbf{1}$
Second ditto	-	-	62

Third ditto, card over the powder, and paper over the fhot - - 39
Fourth, without any wad over the powder . 70
Fifth ditto, more wad over the fhot . 85
Sixth do. double wad over fhot and powder 56
There were, at the firft three fhoots, put into the target, being a round of three feet diameter, which the papers were nail'd to
The laft three fhoots which were made on the other fide of the target, and the thot feem'd to be thrown in with nearly the fame force on each 471

No. 14. A barrel, Spanifh farhion, weight four pounds two ounces; three feet fix inches long.
Atforty yards

8
 THEARTOF

No. 15. A barrel, Spanifh fafhion, weight three pounds four ounces; three feet fix inches long.

AIMWELL.

It appears from vatious other trials befides thefe, which I have made, that the fhot fly as regularly, or more fo, and with as much force without any wad betwixt the powder and thot, ás'it does with wad only. 'Tis difficult to keep the fhot from mixing with the powder; and when it does, thàt will affect it : but it proves thus much at leaft, that it does not fignify how thin your wad is betwixt the powder and fhot, fo it does but keep them from mixing. But the thot fly the thicker and ftronger from having a pretty good wad clofely ramm'd over them.

- F IE N D L Y.

I am well pleafed with thele experiments, as they have given me a better idea of the manner of barrels carrying thot than I could have imagined. I thall now be oblig'd for your opinion, whether Spanifh barrels are really better than Englifh ones of the fame weight, as I find they are fo efteemed by many gentlemen.

SHOOTING FLYING EXPLAINED. 19

AIMWELL.

The repute of the Spanifh barrels arofe chiefly from their lengths, being in general about three feet eight or tenn inches longs, of a fmallifh bore, and that nearly a cylinder; by which means the force of the powder is continued longer upon the flot: and I have already fhewn you, that length of barrel will do more than weight. I have try'd ? great many Spanifh barrels very carefully, and could never find them to carry the fhot better than thofe made in England of the fame form and fize (But the foreigners have found out our foible in that as in moft other of their rarities: that is, if they are but far fetch'd, and dear bought, they are fure to pleafe.) The Englifh form of making them very flont at the breech, is in order to balance them better in hand, and make them come eafier to fight. It anfwers in that refpect ; but then it makes them much heavier, upon the whole: and a fportiman will not chnofe to carry more weight than is neceffary. I have already Thewn you, that from the prefent method of fhooting flying, we have no occafion for guns to kill fo far; and therefore fhorter and lighter guns will better anfwer our purpofe, as they are readier to come to fight, and will kill far enough.

FRIENDLY.

I fee you have a great variety of guns of different lengths of the Spanifh form; which with
what you have faid, makes me think you rather give the preference to the Spanim form.

AIMWELL.

Indecd I do, for feveral reafons. Firf, I never faw a gun of the Spanifh form burft near the breech, tho many of them are very fmall or weak: therefore 'tis not neceffary to add fuch a quantity of metal on account of ftrength; it can be only with a defign to balance it the lighter forward. But as barrels of common lengths will balance very well,- it anfwers no good or ufeful purpofe: to make barrels fo fout at the breech. Again, they often draw thofe' barrels thinner forward about the middle, in order to make them the niore handy, and to look neater; tho' I think it no addition to its beauty, and this will take off from the force the fhot is carried out with: fo that a barrel of the Spanifh fafhion, continued with a more regular thicknefs will kill farther than one of a greater weight where there is more metal than is neceffary at the breech, and 'too thin forwards. Another difadvantage in a barrel fo made, is, that it will be bigger and :clumfier above the lock part, and the fock will not have frength enough. For if you take notice, you will often find the fock fplit with a little ufe from the breech to the forefide nail, than in thofe of the Spanifh fafhion, where there is room to leave the fock ftronger, without making it clum-

SHOOTING FLYING EXPLAINED. 2\%

fey. But I would not have you imagine, that I approve of barrels too thin at the breech. I would have them of proper fubftance for ftrength in every part, and fo as to balance properly. I have experimentally feen a good killing barrellofe much of its force in carrying thot, by filing it thinner; which fhews that barrels ought not to be drawn fo thin; fince a tolerable fubftance is neceffary both to carry the fhot fmarlly, and for fafety.

FRIENDLY.

Since you are fo free and ready to inform me, if Iam not too inquifitive, pray explain to me why the bore you mentioned, of about five eighths of an inch diameter, is the beft fize for fhooting flying? fince the generality of barrels appear to me to be much larger.

A I M W E L L.

'Tis very true that birding guns in general are of a larger bore: but if you judge of them by the fize at the muzzle, they appear to be much larger than they really are; many of them being much opened at the muzzle, and gradually lefs for about a foot, and then continue nearly a cylinder to the breech. This form is ufed to make them carry the fhot clofer by letting them open gradually in coming out. The reafon feems plaufible, and appears fomtimes to have fome effect, when open'd gradually

THEARTOF

gradually a fmall matter. But there is no reafon 50 open them too much; for in that cafe the fire will have room to pafs off on each fide all round the wad, when it comes to the part much wider and then lofe of its force, and may alfo mix with the outermoft part of the hot, and caufe them ta fcatter the more from a true direction. Many bar: rels are again open'd a little wider gradually tor wards the breech, in order to carry the fhot with greater force, by firf mecting with fome refiftance, and then paffing free: (and alfo that the whole quantity of powder may take fire quicker.) This his atfo appeared to me to anfwer the effect defired; and yet I have met with barrels that have been as nearly a cylinder as poffible in the bore, yet have carried the fhot as round and as ftrong as any other. For which reafon, I practife opening thembut very little, and gradually at each end, as I fee occafion; which method I find anfwers beft. As to the fize, 'tis' certain there mult be a fized bore, which carries a particular load better than any other. Now, as thooting flying is very difficult for fome to attain, and even the beft markfmen have oftentimes their mifcarriages, they are willing to make ufe of as large a load as they can, without hurting themfelves : and therefore fome will choofe in large bore, thinking it will carry a larger load. 'Tis very true that it will,require a larger load; but then the gun muft be heavier in proportion to the load, or (as I have already obferved) they will

SHOOTING FLYING EXPLAINED. 23

be hit harder, and the bird not fo hard. If two ounces of hot, and the fame meafure of powder be thought fufficient (and I think it is to fhoot as any fort of game) then a barrel, whofe bore is ábout five eighths of an inch (or rather a little more) diameter, will be loaded about two diameters and a half of each, and the weight of the gun may be ahout fix pounds. But thofe who will fhoot with two ounces and a quarter of the fame meafure of powder, muft carry a gun of about feven pounds, which will feem heavy to moft people after three or four hours walk. Indeed, I have known two ounces and a half, and three ounces of hhot, made ufe of to a gun under that weight : but then a fmaller quantity of powder was ufed, and confequently could not be fo efficacious as a fmaller quantity of hhot, and equal meafure of powder: and if a fmaller bored barrel is loaded too deep, tho' the gum be heavy enough, the fhot will not be thrown clofer than they would be with a proper load: that is, about two diameters and 2 half of each. And if a larger bore have not its proper load; it will not kill fo fmartly as the fame load in a bore proper for the load. There are but few who will care to ftand before a proper load for a barrel fix eighths of an inch diameter, except poachers, who are covetous of killing every thing, and wilh ftand the bruifing for a fmall advantage: but fair fportfmen are not fych fpit-hunters; they purfue
for
for the fake of diverfion, and to fhow their dexterity.

FRIENDLY.

Iam greatly obliged for this account of barrels, which is fuller and more fatisfactory than I expected. And now I think I may venture to choofe a gun. There feems to be one of the fize and bore you recommended,

AIM•W ELL.

'Tis very true, Sir. But you are not yet judge enough to choofe a gun. There is more to be obferved than the fize and bore of the barrel. That gun is made for a broad thouldered man: the ftock is bent fideways, as if you would lay the plate of the lock upon your knee, and with your hands could bend it: and the point or toe of the butt turns out a little to the right, fo as to bring the breech of the barrel to his eye in a direct line with the muzzle, without conftraint of bending down his head much, which a fhort necked man cannot do without danger of hurting his face. If you pleafe, give me leave to recommend this gun to you. The fock of it is of a middling bend and length, and quite ftrait fideways; which, as you are flender, and your neck fomewhat long, will beit fuit you. The length of the butt from the breech is about fifteen inches and a half; and if a ftraight fpline is laid to the barrel, fo as to touch

SHOOTING FLYING EXPLAINED. 25

touch the muzzle and breech, and continued to the butt, you will find that the butu drops about three inches from that line, (and for a man who has a thort neck, it ought to drop about a quarter of an inch more) and at about three inches from the burt, where the face touches, about two inches and a half: and if he is broad and ftout, and cannot reach his arms fo forward, fourteen or fourteen inches and half in length from breech to butt may be fufficient. Pleafe to take hold of the gun, and balance it upon the fore finger of your left hand, (which is a proper fituation for your left hand) then join your right hand with your fore finger, juft to feel the trigger, your thumb upon the cock, and throwing it off a little fpace from you in a horizontal direction, to prevent its rubbing againft your Thaulder. In takingup the gun, lip your thumboff the cock, and draw the butt to your thoulder, fo as to feel it gently, and point the muzzle to any object; and if you find the breech in a line with the muzzle, without any conftraint, it then lies very well to fuit you. Now, if you obferve, you will find and error, which many gunfmiths perfift in, is here remedied : the trigger is hung at a right angle with the pull of your finger, and as backward from the guard as it will admit of: whereas the srigger is frequently hung to form a right angle with that part of the ftock where it hangs; in which cafe the finger draws at a difadvantage,
being in drawing it forced clofe to the fock; which pofition fhortens the lever, and caufes it to draw off harder than in this, where you find the finger more naturally flips to the end of the trigger, and lengthens the lever : and 'tis neceffary to take the advantage of this as much as may be, in order tọ have a good fear-fpring, without which the lock cannot move well nor fafely; for if the fear-fpring is made too weak, in order to make it draw off eafy, it will then be fubject to catch upon the half cock ; and if it draws off too hard, you cannot be certain of fhooting any flying obr ject. Another difadvantage which attends the trigger being hung too forward, is, that the middle finger will be fo near the guard as to receive a fmart blow upon the difcharge of the piece: I have feen many perfons who have had a callous fwelling upọn this finger, from being batter'd by theguard through this defect. I think it neceffary to give you this hint, as you may fometimes have occafion to fhoot with other guns, or to make choice of a gun elfewhere,

FRIENDLY.

I believe I fhall fix upon this gun, as it feems very handy to me, and comes eafy to fight. But pray be fo kind as to inform me, if your have any objection to a barrel of two feet fix inches, more than its carrying the fhot: for the gun we try'd of that length feem'd to carry the fhot very fmaxtly and clofe at 30 yards.

AIMWELL.

SHOOTING FLYING EXPLAINED. 27

AIMWELL.

Your obfervation, Sir, is true: it threw in ninety thot, on a medium at thirty yards, into a fheet of paper, which one may venture to affirm would kill a bird if held right, and it may fometimes kill at forty yards. But pleafe to take notice, that the weight of it was fix pounds two ounces: and if you compare the fhoots with thofe made with the three feet gun, whofe weight was but five pounds thirteen ounces, you will find them fo much fuperior, that it muft evidently kill farther with the fame load: which, I think, is one objection to your propofal. The next is, fhould a fhort gun go off by an accident whilft you are loading it, you are more expofed to danger, as you will more naturally lean over the muzzle; which, however, in fhort or longer guns ought always to be avoided. What have once happened may happen again. A gentleman whom I knew very well, was out by himfelf a fhooting, and juft as he had loaded his gun (though he knew of no defect in the lock, 'till it was afterwards examined) it went off, and fcalp'd him fo as to leave the forehead bare to the fcull. We may fuppofe he laid for fome time fenfelefs. As foon as he recover'd a little, he faw his hat fhot to pieces, and himfelf bloody : perceiving what had happened, he tied a handkerchief about his head, and walk'd home, and is now perfectly recovered.

E 2
FRIENDLY•

THEARTOB
 FRIENDLY.

A narrow efcape with life indeed; and I am greatly obliged for this caution. Indeed the : Prequent misfortunes which happen from guns, fhew we cannot be too careful in the ufe of them: and I muft agree with you, that we are not fo much expos'd to fuch an arcident as this from a long gun as from a fhort one.

AIMWELL.

There is one more objection, which 1 think an over-balance to the advantage, if it be thought one, of a thort gun's coming more readily to fight, which is: though a longer gun requires a little more eare to bring it to the object, when it is once brought it is not fo eafly put áfide as a hort one, nor does a little variation of the muzzle carry the fhot fo wide from the object as the fame variation of a fhort one does; which I think may be thas eafily explained. Draw a line upon a fheet of paper, and from 2 point, with a pair of compaffes, cut the line at two inches and a half, and three inches and a half: from the fame points of interfection, fet off one-tenth of an inch from the line, and draw lines from the firft point through each of thefe; and at about twelve inches from the three and a half, you will find it will vary about half an inch from the firt line, and the other, which interfects at a tenth diftance from the fine

SHOOTING FLYING EXPLAINED. 29

af the two inches and a half, will at the twelve inches be found to vary about three quarters of an inch. Now, if you count a foot for ant inch, the one will have varied fix inches, and the other about nine inches, at the diftance only of twelve feet; which I think plainly thews that a fmall variation of a fhort barrel will caufa a greater error, which will increafe as the diflance of the bird is farther from you. But if your barrel is tob long and not ready to come to fight; then your extraordinary lengths will not anfwer your expectations, as you may judge from the experiments we have made, that good barrels will not kill above a yard for an inch in length of barrel, from three feet to four feet in length; and therefore a barrel of three feet three inches, I think, anfwers the beft.

FRIENDLY.

Well, Sir, you have fufficiently fatisfied me in all the queftions I am at prefent able to ak, as to the choice of guns: and I would not have been without this knowledge upon any account; as I am certain it will enable me to go on with eafe and courage, and I fhall fooner become a proficient in the art of fhooting flying. But, pray what is next to be done?

AIMWELL.

I hall now give you a fhort leffon, which will take you a long time to get: but I muff firft take
the flint out of your gun, and put in a piece of wood of the fame form; that you may not wear the fteel of the hammer by frequently. friking it down. And now, Sir , take the piece, carry it upon your left arm, with the thumb of your right hand upon the cock, and fixing your eye upon any particular object, prefent the gun in the manner before directed, and in the motion of bringing it up cock it: do it pretty brifkly, but in no hurry fo as to confufe yourfelf: in raifing the cock take care that you prefent the muzzle as near as you can at once to the object, only rather below, that you may have a little matter to raife it, and as quick as you can: brifkly draw the trigger as foon as you have got an exact fight at the object, and continue to keep your muzzle at it for fome time after you have drawn the trigger, left your gun fhould hang fire: which if it happen to do in a very fmall degree, it will render your fhot quite uncertain, efpecially if your mark is moving towards right or left, or any way from the line: but by means of your keeping the gun in motion with the object, a thot may be fometimes recovered, though it hangs fire. This you may practice in your room, or when you walk, at any object fteady or flying; and do it as often as you can conveniently, till you can readily get the object, and draw down in proper time: by which means you will make a greater progrefs in one month than by the common method of hooting in a year or two.

SHOOTING FLYING EXPLAINED. 3 i

It may not be amiss now juft to give you a hint concerning crofs-fhooting: from the many experiments you have feen of guns carrying fhot, you muft have an idea how the fhot fread at different diftances.

A very good gun at twenty yards will fpread the fhot fo, that in a circle of twelve or fourteen inches no bird can effiape alive. Now, if the fituation obliges you to fhoot at a bird at this diftance flying crofs, either to the right or left, if you take aim fix inches before it, fuppofing the bird not to have mov'd from the time of your drawing the trigger to the fhot's hitting it, the bird will be entered far enough into the circle of the fhot to be fecured: but as the bird is in motion, it muft have moved fome way before the fhot can reach it: fo that 'tis mof likely the bird will meet the center fhot; and fhould you be fomething longer in drawing the trigger, you will have the better chance from the rear thot. From the fame reafoning, if you take exact aim at the bird, and draw brikly, you may kill it with the rear-hot: but by obferving the above method, you have double the chance, as the bird muft pafs through the whole dirk of the fhot. I think I have already remarked, from the experiments we have made, that the fhot delivered from a gun in general lofe or decreafe half the quantity every ten yards, or thereabouts;

THEARTOF

abouts; fo that at forty yards there will not be shrown in above a fourth of what it would into the fame fpace at twenty yards, From which it appears, that if you take aim at a foot before 2 crofs fhoot at forty yards, you will be the moft likely to meet the bird with the center fhot; and which by the by I look upon to fly the ftrongeft, and to be more efficacious at long diftances than the diverging thot; for whether it be the fhot ftriking againft each other, or againft the air, at firf coming out of the muzzle, or whatever be the caufe of their diverging, I think it muft in fome degree retard their motion. But if there is a buik wind, it will certainly bend the courfe of the fhot; you mult therefore confider, whether the wind blows with the bird, or againft it; if it blows with it, you need little more than obferve the general rule, by reafon the wind will help the bird forward nearly as much as it diverts the fhot; but if it flies againt the wind, the fhot decline more than the bird is retarded, and therefore you ought to take aim at a greater diftance before the bird.

Thefe hints may be of fervice; and from thefe you may judge of all other diftances. Yet practice only can make you a mafter in this critical point, as alfo in the oblique fhoots. For inftance: fuppofe a bird at any diffance from you flies off in a diagonal line, you muft take aim

SHOOTING FLYING EXPLAINED. 33

but half as much before it as you would do in a crofs thoot at the fame diftance; and in the fame proportion at a greater or leffer angle. The different marks are very prettily defcribed by aningenious gentleman of St. John's College,fome years ago; in a poem call'd PTERYPHLEGIA, which is fo fit for the occafion, that I hall give it you in his own words.
" Five general forts of flying marks there are,
"The lineals two, traverfe and circular;
" The fifth oblique---which I may vainly teach;
" But practice only perfectly can reach.
" When a bird comes directly in your face,
"Contain your fire awhile, and let her pafs,
" Unlefs fome trees behind you change the cafe.
" If fo, a little fpace above her head
" Advance the muzzle, and you ftrike her dead.
" Ever let fhot purfue where there is room;
" Marks hard before, thus eafy will become.
" But when a bird flies from you in a line,
" With little care I may pronounce her thine.
" The unlucky crofs-mark, or the traverfe fhoot,
" By fome thought eafy, yet admits difpute.
"As the moft common practice is to fire
" Before the bird, will niceft time require;
"For too much fpace allow'd the fhot will fly
" All innocent, and pafs too nimbly by:
" Too little fpace, the partridge fwift as wind,
" Will dart athwart, and bilk her death behind.
" This makes the point fo difficult to guefs,
"' 'Caufe you muft be exact in time, or mifs :

- Full forty yards, or more, to left or right,
"The partridge then obliquely takes her flight:
" You've there the advantage of a fideling line;
" Be careful, nor her inward fide decline.
"Thus in the mark is ftiled circular,
"There's nothing more requir'd but fteady care,
" T'attend the motion of the bird, and gain
"ك The beft and farther lineal point you can;
" Carrying your piece around, have patience 'till
" The mark's at beft extent, then fire and kill.

Dialogue III.

FRIENDLY.

WELL, Sir, for this week fince I faw you, I have much practifed the leffon you gave me, and believe it will be of great ufe to me; for I find that I can already point the gun to any object very readily.

A I M W ELL.

Sir, I don't doubt your application; and fhall now put a flint into your gun, and recommend it to you to practice for fome time the fame method with a little prime, and then with a fmall load of powder; which may not improperly be term'd, teaching you to ftand fire, without the leaft

SHOOTING FLYING EXPLAINED. 35

Heaft ftarting; which is a thing very material towards the becoming a good markfman. When you are perfect in this, you may fhoot at a mark at twenty yards, with half a charge, or a little more. By degrees, as you find you can do it well, without any fear or uneafinefs, repeat the fame at thirty yards, with about three quarters of a charge.

> FRIENDLY.

I am obligd for this leffon. I fhall call on you again in about a week; in which time 1 don't doubt but I fhall be able to handle the gun pretty dexteroufly.

A I M W E L L.

I believe you will foon make a progrefs in fhooting; but I have juft thought of a method; which I fhall now inform you of, by the practice of which you may be able to become a tolerable markfman at your firft going into the field. Get a target made of a piece of board; let it be round, and about three feet diameter; put a faple into the edge of it to hang it up by get at fpline ten or twelve' feet long, and to one end of it fix a hook to hang the target on, and near the dther end make feveral holes to hang it to an iron pin, which is to be fixed up in a convenient place at a proper height, fo as the target when hung on it is fufpended fometimes a little

$$
\text { F. } 2 \quad \text { higher, }
$$

higher, and fometimes lower than a point blank mark. This is to be put in motion like a pendulum, and you may fhoot at it whilft it is moving, either to the right or left, with about half a load, at twenty yards diftance; and by the breadth of the target, you will eafily fee how the body of the fhot went, either before or behind the mark, and the next fhoot you may take aim accord. ingly. It will be neceffary that you prepare fome whitening, that you may with a brufh cover your Thots every time before you fhoot again; and with a piece of charcoal, you may make a mark to take aim at. You may alfo fometimes ftand obliquely to it; by which means you make a very great variety of marks. When you have made this way of thooting very familiar to you, try it with about three quarters of a load at thirty yards; and by much practice of this method, you may become a better markfman at firft going into the field than you would be without it by a year's practice in the field; becaufe you may hereby difcover an error, that you perhaps would otherwife perfift in ; and as you can repeat your fhoots at any time when you have leifure, as often as you like : which is not the cafe in the field; for fport is fo very uncertain, that you may go out feveral times and not get many thoots; fo that, unlefs a man is very alert, and ftrong enough to undergo a deal of fatigue, he can attain the art of fhooting

SHOOTING FLYING EXPLAINED. 37

ing flying but very flowly: whereas by this contrivance it becomes a fcience, and may be practifed with fatisfaction by the curious, whether weak or ftrong. The reafon why you are to ufe but half a load at firf, is, that it may not in the leaft difturb your pofition, or caufe you to ftart; which if you thould get a habit of at firft (as you may do by overldading) you will find it difficult to attain to any certainty: for you muft be very fteady, and endeavour to keep the gun to the mark after you have drawn the trigger, as has before been obferved, and the . Thot will fly thick enough at twenty yards to make your obfervations from; and you may encreafe your load, and the diftance you fhoot at, by degrees, as you find it convenient: but never be covetous of overloading, though you want to kill at long diftances, for that will not anfwer your expectations.

It may not be improper in this place to take notice of the force of powder. As there is an amazing difference in the frength of powders, it is neceffary that you try your powder, and increafe or decreafe its quantity, in proportion to its weaknefs or ftrength. There are fmall machines for this purpofe, with a lock fomething like a piftol, which are convenient, as they are portable. But I lately
lately contrived one, which feems to be much more fatisfactory. I Thall endeavour to defcribe it to you, as follows. It was made of forged iron, one inch and three quarters fquare, and two inches and a half long, with a mank about two inches long, on which part was filed π coarfe fcrew, to fix it into a block by. A round ball was made of forged iron, about one inch and feven tenths diameter, and weighed twelve ownces, At the top of the iron was a hollow, made to receive about a third part of the ball, and fitted it very clofe. In the middle of this hollow a hole was drill'd, about three tenths of an inch diameter, and one inch and a quarter deep, which held eighteen grains of powder: a place was funk on one of the edges of the fquare for a pan, and a touch-holedrill'd. Thus. compleated, it was fcrew'd into a block, to point a little higher than an angle of forty five degrees, that the ball might lay the fteadier in the hollow. After this I made the following experiments.

Yards

Some Dutch powder, large grain'd, threw the ball - - - I I-half
Some powder bought at the grocers, at i6d. per pound, near - - 4
Battle powder $\quad-\quad-\quad 8$ I-half
Double frong ditto $\quad-\quad-\quad 8$ I-half
Beft double ftrong dito $\quad-\quad-12$
The

SHOOTING FLYING EXPLAINED.

The experiments were tried firft with the ftrong powder, which increafed at the fecond trial about a yard and half, and third trial near a yard more. After which, the iron being a little warm'd, the trials with the fame powder came pretty nearly alike, and each fort was tried three or four times: the ball was alfo carried very nearly in the fame line. From which circumftances I conchude this the beft method of proving gunpowder that I have yet met with.

If you have a defire to be acquainted with the nature and compofition of gunpowder, and the good and bad qualities attending it, I recommend to your perufal the tracts on New Principles of Gunnery, by the late ingenious Benjamin Robins, Efq; wherein, by a new contrivance, he has not only determined the force of any quantity of gunpowder, but alfo the velocities of balls difcharged from barrels of feveral lengths, in a moft accurate manner. He alfo makes it appear, that the incurvated track of balls to the right or left, or otherwife from the line, is occafioned partly from the refiftance of the air on the inequalities of the furface, and partly from a whirling motion the bullet has acquired in coming out of the barrel. Ithink it is not unlikely, that the great difference of our fhoots made with the fame quantities of fhot from the fame piece
may be from the fame caufes, as fome of the thot are not very round, and fome of them may acquire a greater degree of that whirling motion than others in parting from each other, which will continually increafe the deflection as they go on from the line. If this be the cafe, we fhould not endeavour to throw them with more force than is neceffary; becaufe, he proves, that the refiftance of the air will increafe in a much greater proportion to the force added than has hitherto been fufpected, and will confequently increafe the deflection of thofe fhot which have received fuch a motion. Upon the whole, therefore, I think, that if you ufe the beft double ftrong powder, two-thirds of the quantity will have as much force as the full charges of common powder, and be fufficient to kill at 50 yards, which is as great a diftance as a fportfman will in general attempt to fhoot at, and indeed greater than he ought to fhoot at: for if we will make the lives of poor birds our. diverfion, we ought to put them to as little mifery as we can; and therefore fhould not fhoot withoit being certain they are within our reach, fo that the fhot will fly thick enough to kill them outright. I therefore recommend it to you to begin with that quantity of the beft powder, and not increafe it, unlefs you find it neceffary.

I have

SHOOTING FLYING EXPLAINED. 41

I have now given you all the hints I can recollect ferviceable for the improvement of a young practitioner; but it muft be from much exercife that you will become a markfman. As to your conduct in the field, you will have opportunities of going out with different perfons, who will differ much in their opinions: I thall therefore leave it to your own judgment to deal on every occafion as experience may direct.

As you are going to leave this part of the country to-morrow, and the rhooting feafon is juft at hand, I thall difmifs you with the following hints, always neceffary to be remembered.

Take care to keep your powder from getting damp, which will weaken it in propertion to the quantity of moifture it receives.

Before you take the field, examine that your barrel be clean and dry, and clear the touch-hole with a feather, which you may leave remaining in it until you load; and oil the fprings of the lock.

Take with you flints, a turnfcrew, and a worm upon your rammer.

Load not 'till you are near the place of action. It will not be amifs to fire off a little powder firft, to warm the barrel; if you do not, it is neceffary to put in a little more powder for the firt load.

Prime not too full.
Ram

Ramodowa your powder very gently, with a Gingbe'wad of foft paper over it; and pretty tight with a dotible twad over the thot.

When you have fired, load again as brikk as poffible before the barrel cocals, as the heat will expel any dampnefs from the powder, and inqreafe its force.

Be careful, yet not timorous.
Raife your piece gèntly to the object.
Take time, and never thoot without-aim.
Be fitent, and avoid the fun.

A P P E N D I X.

$\% * \%$ A VING in my firt edition of Shooting
$\mathrm{H} *$ Flying recommended to the curious the \% $* *$ perufal of the Tracts on New Principles of Gunnery, by the late ingenious Benjamin Robins, Efq; it has been tequefted, that in my next edition I would felect from that work fuch parts as may be thought ufeful to fportfmen, in difcovering the real velocities with which fhot are thrown from barrels of different lengths and bores, with various charges of powder and thot. I fhall, therefore, firft give- a fhort account of the nature and properties of gunpowder; then proceed to give the rules for finding the potential or greateft range of bullets, at forty-five degrees of elevation, of pieces óf various lengths and bores, eftimated in vacuo; from which will be fhewn how much the velocity will be increas'd or decreas'd, by lengthening or fhortening the barrels: and then to elucidate the whole from experiments, as nearly as the nature of fuch computations will
admit: for a rigorous and geometrical determination is incompatible with the fubject; it being almof impoffible to make two experiments alike, without fome variation, though near enough for our purpofe to diftinguifh the goodnefs of guns ufed by fportimen, amongft whom are fuch frequent difputes. And firft of gunpowder.

Gunpowder is a compofition of falt-petre, fulphur, and charcoal. The ingredients are firt to be finely powdered, then moiftened with fair water, vinegar, fpirit of wine or urine; and afterwards all muft be well beat for a long time, taking care to wet the mafs frequently to prevent its taking fire; and, lafly, fqueezing it through a fieve to granulate it.

The charcoal and fulphur eafily take fire and kindle the nitre; and the firit of nitre being thereby rarified into vapour, rufhes out with an explofion.

- The proportions of the ingredients of gun' pawder are various; but that which has been ' approved by experience, and feems now to be ' generally allow'd the beft, is, that in any quan' tity of powder three-fourths of it fhould be - falt-petre, and the remaining one-fourth con-- fifting of equal quantities of fulphur and char' coal. The moft expenfive part of the compofition,

A P P ENDIX.

- fition, and confequently the part in which pow'der is moft liable to defect, is the falt-petre.'
- Salt-petre is of itfelf an uninflammable fub${ }^{5}$ ftance: for if it be placed in the moft violent - fire, it only melts, and never flames, provided no - combuftible matter be previoufly blended with it. - But though unmixed with other bodies it will - neither flame nor burn, yet if it be joined with ' combuftible fubftances, it greatly augments the ' violence of their burning: powder then being s a mixture of fulphur and charcoal (which are s inflammable fubftances) with falt-petre (which s in itfelf is not) if the falt-petre be too much 6 in quantity, when compared with the other two, ' their burning may not be fufficient to confume ' the whole of the falt-petre; whence the fire ${ }^{6}$ may be lefs violent. On the other hand, if ' the falt-petre be lefs than what the burning of ' the other two fubftances can eafily confume, ' the fire will be lefs active and explofive than ' it ought to be.'

[^1]
46 A PPENDIX

5 other circumftance not lefs effential, is the mix - ing of them well together. If this be not effectur ' ally done, fome parts of the compofition will ' have too little force; and in either cafe there s will be a diminution in the frength of the ' powder.'

- Gunpowder fired exhibits by its explofion ' the effects of an elaftic fluid; whether it be ' air or not, I thall not take upon me here to ' determine; but this is certain, it acts like air in - a condenfed ftate. This fluid feems to be de' rived from the falt-petre alone; for neither the - brimftone nor charcoal yields it when fired fe' parately: and falt-petre is known to be a fub' ftance imbibed from the air by the earth; for ' the fame parcel of earth, by being properly ' ly expofed to the air, will furnifh falt-petre over ' and over again for ever.'
- ' Now as bad powder ufually contains fome - common falt in it, by reafon of the little care ${ }^{6}$ taken in refining the nitre; and as common falt ' imbibes moifture in a ftronger degree than ni' tre; it is not difficult to conceive how bad pow' der fhould in a moirt feafon be more impregna' ted with moifture than good, and confequently ' lofe more of its force.'
> - As powder when wet will not fire at all, fo - every degree of moifture will leffen its force.

A P P E N DIX.

- If, therefore, powder be expofed to the greateft
' damps without any caution, or if common falt
${ }^{〔}$ abound in it, the moifture it imbibes may per-
' haps be fufficient to diffolve fome parts of the
' nitre, which is a lafting damage that no drynefs
${ }^{6}$ can retrieve; but if proper care is taken in pre-
' ferving powder, and the nitre it is compos'd of has
' been will purged of the common falt, it will ' retain its force many years.'
- But the moifture of the atmofphere will in:
' creafe the weight of powder even in a room
' where a fire is kept; it is therefore neceffary to
- dry the powder in damp weather before you ufg
' it; but fome care is required in drying damp
' powder; for there is a degree of heat, which
' though not fufficient to fire the powder, will
' yet melt the ulphur, and deftroy the texture
' of the grains;' nay more, there is a heat with
' which the fulphur will flame and burn away
' gradually, and yet the powder will not explode.
- Of this any one may fatisfy himfelf, by heating
' a plate of iron red hot, and then throwing on a
- few grains of powder by intervals, during the
' time of its cooling; for by this means he will
© find, that at a certain time the feparate grains
' that fall on the iron will not explode, but will
- burn with a fmall blue flame for fome fpace of
- time, the grains ftill remaining unconfumed.'
- Standard

48 A P P E N D I X.

- Standard ginnowder, fuch as is or ought to - be made for the ufe of the government, fired ' in any fpace, acts nearly in the fame manner ' as a quantity of air would do, which was a ' thoufand times more denfe than the common ' air we breathe; and which in that condenfed - flate filled the fame fpace that was taken up by ' the unfired powder.'

Hence it follows, that the preffure of the powder on the fhot grows perpetually weaker and weaker, as the fhot are impelled forwards; the inflamed powder taking up more room, and confequently its elafticity being diminifhed.

Mr. Robins difcovered, 'in a piece near four ' feet in length, charged with half an ounce of ' powder, and the ball about an ounce, that the ' velocity communicated to the bullet during the ' three firf inches of its motion, was full half ' the velocity which it acquired in its whole paf' fage through the barrel; and that the elafticity ' or force of the powder in the firft three inches ' of its expanfion, was at a medium near eight ' times greater than in the laft two feet of the - barrel; that from thefe circumftances, the whole ' mafs of powder might be fuppofed to be kin-- dled before the bullet was fenfibly moved from - its plàce.

A P P E N D I X.

© That if the charge of powder in a twenty-- four pounder takes up one foot of the cylinder - before it is fired, and the whole length of the - cylinder be nine feet, then when the bullet ar-

- rives at the mouth of the piece, the powder
© extends through nine times the fpace it did at
- firft, and confequently exerts but one-ninth of © its original preffure; and the longer the piece ' is, in proportion to the extent of the charge, ' the more is the action of the powder diminihed.'
- If the fame piece be fired fucceffively with - different charges of powder, the preflure of 'thefe different charges upon the bullet, in any 'given part of the barrel, is nearly in propor' tion to the quantity in each charge.'
' If two pieces of the fame bore, but of diffe-
- rent lengeths, are charged with the fame quan-- tity of powder, the longer the piece, it will, ri'gidly, Ppeaking, communicate the greater velo' ciry to the bullet. However, unlefs their lengths ' are extremely difproportioned, the velocities of ' their refpective bullets will differ but little: for ' inftance: if a mufket barrel, of a common - length and bore, be fired with a leaden bullet, ' and half its weight in powder, and if the fame ' barrel be afterwards fhortened by one half,
' and be again fired with the fame charge; the
- velocity of the bullet in this thortened barrel H ' will

6 will be about one-fixth part lefs than what it ' was when the barrel was entire: and if, inftead - of fhortening the barrel, it be increafed to twice ${ }^{6}$ its cuftomary length (when it will be near eight - feet long) the velocity of the bullet will be ' hereby augmented by more then one-eighth ' part; and the greater the length of the piece c is, in proportion to the diameter of the bullet, - and the fmaller the quantity of powder, the ' more inconfiderable will thefe alterations of ' velocity prove. So that increafing or dimi-- nifhing a twenty-four pounder, for inflance, ${ }^{r}$ by a foot in length, with its cuftomary charge ' of powder, occafions no greater change thah ${ }^{\text {c }}$ one-fortieth part in its velocity.

From the above mentioned principles it follows, that the actual velocities, with which bullets are impelled from their refpective pieces, are hence eatily affign'd; whence the potential random, or their greateft ranges at 45 degrees, eftimated in vacuo, may be readily known. I hall here lay down fome practical rules for that end, without entering into their demonftration.

R U L E.

' If a leaden bullet be fired with its weight of ' powder from a piece of 90 diameters long, its ' potential random will be 60,000 yards; and if © both the powder and the length of the piece ' are
© are together increafed or diminifhed in any ' proportion, the potential random will be in-- creafed or diminifhed in the fame proportion. ' Thus with half the weight of the bullet in ${ }^{\text {' }}$ powder, and a piece of 45 diameters long, the ' potential random will be 30,000 yards, and ' with a fourth of the weight of powder, and a ' piece of 22 one-half diameters, its potential
${ }^{\text {' }}$ random will be 15,000 yards.
' To find the potential random to any given' ' piece, bullet and charge, proceed thus; firft
' find what length of piece (eftimated in diame-
' ters of the bullet) and what potential random
' correfponds in the preceeding rule to the given
' charge of powder; call this potential random
' A: then if the length affigned by the rule is
' the fame with the length of the given piece,
' this number A is obvioufly the potential ran-
' dom fought. But if the length of the given
' piece be more then the length deduced from
' the rule, then take the difference of the tabu-
' lar logarithms of thefe two lengths, and mul-
' tiplying this difference into A (the logarithm
' of ro being fuppos'd unity) and then adding
' the refulting product to A , the fum will be the
' potential random requir'd. If the given piece
' falls fhort of the length deduced from the rule,
' inftead of exceeding it, then the product of the ' difference of the logarithms into A muft be ta-

- ken from A, and the remainder will be the po© tential random fought.'

Suppofe it be required to determine the potential random of a piece thirty inches long, and fix-tenths bore, carrying a bullet three quarters of an ounce weight, equal to 33^{6} grains, with 80 grains of powder; 80$) 336(4,2$: here the weight of ball is four and near two-tenths the weight of the powder; and by the rule, 90 by 4,2 is,

4,2) 90,0 (21 diameters
And 4,2) $60000,0(16666$ yards, which call A.
Whence a piece of 21 diameters in length, with this charge, would have a random of about 16666 yards. The barrel in queftion being 30 inches is 50 diameters, fubtract the logarithm of 21 from the logarithm of 50 .,

APPENDIX.
 53

The logarithm of 50 is 1,6989700
Logarithm of 21 in $\mathbf{1 , 3 2 2 2 1 9 3}$
The difference mulutiplied by A $\begin{array}{r}53767607 \\ 16666\end{array}$
22605642
22605642
22605642
22605642
3767607
6279,0938262
To which add A 16666
The potential $=22945$ random fought Diameters

Now let us fuppofe the killing diftance of the piece of two feet fix to be 40 yards, if we divide its random by 573 , it will give that number 40: and if all the other randoms are divided by the fame, their quotients will bear the fame proportion.

Thus

Thus the barrel $\left\{\begin{array}{l}2 \text { feet } 6-50-40 \\ 3 \text { feet }-60-42 \text { 1-5th } \\ 3 \text { feet } 6-70-441-5 \text { th } \\ 4 \text { feet }-80-46 \\ 5 \text { feet }-100-49\end{array}\right.$
And thefe are the proportions of their killing diftances, or velocities, from pieces of thefe lengths with the fame bore and load. And barrels of any different fized bores, with the fame proportion of powder to the weight of the bullet, and the fame lengths in diameters of the bullet, will have the fame ranges.

Hence a piece of fix-eighths bore will require a bullct of one-twelfth of a pound, equal to 584 grains; and 13^{2} grains weight of powder, and 50 diameters, equal to 37 I -half inches, will be required to give the fame range, or the fame velocity, with the barrel of 30 inches in length, and fix-tenths hore. So that of a piece of fixeighths bore, with the load mentioned, and only 3° inches long, the random would be 17,349 yards, and its proportional killing diftance only. 30 yards: but as this load of powder is greater than any man can bear to ftand againft, with double the weight of the bullet in fhot, its velocity will fill be much decreafed by lefiening the quantity of powder: fo that 90 grains weight of powder to the ball of 584 grains, with a piece of

A P P ENDIX.

of 9 diameters, would range only 15,932 yards, its killing diftance in proportion with the others being only 27 yards.

The following is the difference in the lengths of barrels of thefe two bores to give the fame velocities, occafioned by the difference of the diameters; with the proportions of powder and ball to each fize.

Diameters. fix-tenths bore. fix-eighths bore.

| 50 | of | feet 6 | is | feet 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $60-3$ | 0 | - | 9 | 9 |
| $70-3$ | 6 | -4 | 4 | |
| $80-4$ | 0 | -5 | 0 | |

Hence the length of pieces of any fized bores mutt be fo many diameters in length, and the fame proportions of powder and ball, to give them the fame velocities.

In the former edition I endeavoured to prove, by comparing fhoots made at feveral diffances, that a barrel of a common length will not increafe or decreafe above a yard in diftance for one inch of barrel, in regard to its carrying of the fhot clofer, \&c. and by the above calculations it will not make above two yards difference in the velocity, for three inches of barrel.

From

From the above rules, the potential randon of pieces of any lengths or bores may be found: but this on a fuppofition that all barrels of the fame lengths and bores, with the fame charge, will throw a bullet with equal velocity.

Mr. Robins afferts, that he has had feveral barrels made for that purpofe, of different metals and weights, yet of the fame dimenfions of length and bore, and found no fenfible difference in their range. However this may be with bullets, it is well known by experienced fportimen, that there are great differences in the velocities of thot thrown from barrels of the fame lengths and bores. I hall, therefore, next point out the methods by which their real velocities may be known,'and make fome experiments fufficient to determine the fame.

The firft method I fhall propofe for this purpofe, is that contrived by Mr. Robins, for determining the real velocities of bullets, by firing them at a pendulum. Such a pendulum I made, according to the following eafy and cheap conAfruction.

To a piece of flat iron, about a foot long, having a pivot at each end, I rivetted the end of a flat iron rod, about fifty-four inches in length, to as to form a T. At the bottom of the rod were thrce

A P P E N D 1 X.

three holes, about three inches from each other, to which was faftened, by three ftrong woodfcrews, a piece of plank-wood about fourteen inches fquare, and two inches and a half thick. I then hung it upon two half-ftaples to a joift of the cieling of an out-houfe, oppofite the door, fo that it might be eafily taken off and on as I wanted it, and fwing to and from the door-fpace fo freely on its pivots, as to be eafily put in motion; the pivots being greas'd or oild, to prevent any extra-friction of the ftaples cutting the pivots: I then fixed a fmall iron-rod from the lower part of the wood or pendulum, to reach within about four inches of the floor, with a lonp-hole at its end, to faften a ribbon or tape to. At a little diftance before it, was laid loofe on the floor a piece of wood (heavy enough to refift a fmall force) to which was fixed a piece of fimple contrivance, through which the tape might be drawn eafy, but yet ftiff enough to meafure the extent of the vibration, after a blow given to the pendulum; one end' of the ribbon being faftened to the loop-hole of the rod. The little inftrument for drawing the ribbon through was thus made. I took a piece of thin plate-brafs, about the fize of a card, bent down fquare about three quarters of an inch of its breadth, through which two holes were made, to faften it by two fmall wood-fcrews to the piece of wood mentioned; the other edge was kent

58 A P P E N D I X.

down fquare the contrary way for about half an inch of i it, and clofe to the part bent down, near one end of it, was a hole as long as the breadth of the ribbon, and a thin fpring of brafs riveted to the other end of the part, bent down fomething longer than the whole, in order to prefs it down by the finger, whilft I put the ribbon thro' which was to draw tight betwixt the fpring and the upper part. The machine thus compleated, and faftened to the piece of wood, and laid about twelve inches before the rod of the pendulum (to which was faftened the ribbon) and drawn tight through the machine, and laid loofe on the floor, I put a pin through the ribbon, clofe to the edge of the brafs next the pendulum; and fix'd a reft, to lodge the muzzle of the gun upon, at feven yards diffance, in order to make every: trial at the fame diftance, as well as to level it exactly at the center.

The firft experiment I made, I found the wood was too hard, as fome of the fhot rebounded from it: I therefore cover'd it with a piece of poplarplank, faftened to the wood of the pendulum by a nail at each corner: which I found very convenient, as I could eafily take it off after thootIing many times at it, and fix on another piece: becaufe by often fhooting at it, the pendulum will become heavier; which would caufe fome difference in the experiments, unlefs allow'd for,

The

The frt of the following experiments I made to try the difference of the force of powder, from a piece of two feet ten inches the barrel, the bore five-eighthis: weight of the whole gin five pounds four ounces; with eighty grains of powder, and one ounce and a half of hot.

No. 1.

Lads. Inches
The beft double frog powder drew
the ribbon out - $\quad-18$ r-half
Ditto - - - $\quad 19$ r-half.

Powder bought at $16 d$. per pound 12 1-half. Ditto bought at 20 d . - 16 1-half.

No. 2. The fame charge with a piece three feet three inches the length of the barrel, and fix-tenths the bore: weight of the whole gun five pounds twelve ounces.

Wals.Atricheo
The bet double ftrong powder drew the ribbon out
Ditto
Powder at $16 d$: per pound - 18
Ditto at 20 d - - 20
The trials made with the fret gun were weak= er, I believe, on account of the touch-hole being wider than ufual: but the proportions are much the fame, and agree nearly to the proportions in thole experiments made in the former part with
my powder-trier: I fay nearly; for exactnefs is incompatible with experiments of this kind.

No. 3. A gun two feet fix inches the length of barrel, and fix-tenths bore; weight of the whole gun five pounds fix ounces.
With eighty grains weight of powder, and $\sqrt{n n}$:
one ounce and a half of fhot, drew the
ribbon out
Ditto
Ditto with two ounces of fhot
Ditto with ninety-two grains of powder,
and two ounces of fhot

No. 4. Another gun two feet fix inches the length of barrel, and five-eighths bore; weight of the whole gun five pounds eight ounces.

Has.en:
With eighty grains weight of powder, and one ounce and a half of fhot, drew the ribbon out $\quad 25$ I-half.
Ditto with two ounces of Mot 28
Ditto with ninety-two grains of pow-
der, and two ounces of thot $\quad 30$ r-half.
The gun, No. 2. with eighty grains of powder, and one ounce and a half of hot, drew out - 25 i-half.
Ditto with two ounces of fhot 29
Ditto with ninety-two grains of powder, and two ounces of thot 3^{1}

Her

Here it fhould be remarked, that thotgh the ribbon was drawn out farther with two nunces of Thot than with one ounce and a half, and 80 grains weight of powder; yet as there was a fourth part more weight in the two ounces, fo one fourth part of the inches meafured on the ribbon hould firft be taken off, and then by comparing, it will be found; that each fingle fhot of the ounce and a half charge had the greateft velocity: the quantity of powder muft therefore be increafed in proportion to the addition of thot, to give each hot in the different charges the fame velocity.

The number of inches drawn out and meafured on the ribbon, will, I apprehend, be thought fufficient, by the greater part of my readers, for difcovering the velocities that fhot are thrown with from different guns, by comparing them with each other, or the force of different powders by the fame comparifons. But if we be further curious to know the actual velocity given by the explofion of powder, that is, how many feet in a fecond the fhot would move with at firft coming from the barrel; this requires a farther inveftigation, which I hall endeavor to explain in the moft eafy method.
> ' The principle on which the machine here - defcribed is founded, is this fimple axiom of ' mecha-

- mechanics; that if a body in motion frikes s another at teff, and they are not feparated after the froke, but move with one common motion; - then the common motion is equal to the motion ' with which the firft body moved before the - ftroke: whence, if that common motion, and ' the maffes of the two bodies are known, the - motion of the firft body beforc the froke is ' thence determined. Hence then, if the weight ' of the pendulum be known, and likewife the - refpective diftances of its center of gravity, and - center of ofcillation, from its axis of fufpenfion; ' it will thence be known what motion will be - communicated to this pendulum by the percuf-- fion of a body of a known weight moving © with a known degree of celerity, and ftriking © it at a given point. Hence then, if a bullet or ${ }^{\text {e }}$ charge of thot of a known weight frikes the "pendulum, and the vibration which the pendu-- lum makes in confequence of the froke be - afcertained, the velocity with which the ball or - Thot moved is thence to be known.
- But in order to compute the velocity from © the vibration of the pendulum after the froke, (it is firft heceffary to know the dimenfions of the ' pendulum.

The weight of this whole pendulum was 32 pounds I-half: its center of gravity was 42 inches
diftant

APPENDIX

diffant from its axis of fufpenfion: and 55 of its fmall fwings were performed in a minute: whence its center of ofcillation (determined from hence) is 46 inches and near $3-4$ ths diftant from that axis. The center of the piece of wood is diftant from the fame axis 49 inches: and to the loop where the ribbon is faftned is 96 inches from the fame axis.

To find the center of ofillation, fay, as the fquare of the vibrations is to the fquare of 60 (the vibrations in a minute) fo is the length of a pendulum which beats feconds (viz. 39.2 inches) to the diffance of the center of ofcillation from the axis of fufpenfion. Thus as 3025 is to 3600 fo is 39,2 to 463 -4ths, the diftance required.
' In a compound ratio of 49 to. 46.3-4ths, and - 49 to 42 , take the quantity of matter of the ' pendulum, $32 x$-half, and the fourth Number ' will be 26 pounds nine ounces.' Thus 49 multiplied by 49 is to 46,75 multiplied by 42 as $3^{2,5}$ to 26 pounds 9 ounces, the anfwer required.
' Now geometers well know, that if the blow ' be fruck in the center of the piece of wood, ' the pendulum will refift to the ftroke in the ' fame manner as if this laft quantity of matter, ' 26 lb .9 oz . was concentrated in that point, and ' the reft of the pendulum taken away. Whence' ' fup-

$64 \quad$ A P P E N D I X.

- fuppofing the charge of thot impinging round
'that point to be two ounces, or 1-212th part
' of this quantity of matter (nearly) the velocity © of the point of ofcillation after the ftroke will, - by the laws obferved in the congrefs of fuch - bodies as rebound not from each other, be I' 212 th of the velocity the body of the fhot moved ' with before the ftroke.'
- The velocity of the point of ofcillation after © the ftroke is eafily deduced from the chord of ' the arch, through which it afcends by the blow: - for it is a well known propofition, that all pen© dulous bodies afcend to the fame height by their ' vibratory motion, as they would do, if they
' were projected directly upwards from their low${ }^{\text {c }}$ eft point, with the fame velocity they have in ' that point. Whercfore, if the verfed fine of © the afcending arch be found (which is eafily` ' determined from the chord and radius being ' given) this verfed fine is the perpendicular height, ' to which a body projected upwards with the ' velocity of the point of ofcillation would arife: ' and confequently, what that velocity is, can be ' eafily computed by the common theory of fal${ }^{6}$ ling bodies. For inftance; the chord of the ' arch defcribed by the afcent of the pendulum ' after the ftroke, meafured on the ribbon, has ' been fometimes 28 inches; the diftance of the ' ribbon from the axis of fufpenfion is 96 inches. ${ }^{2}$ Then

A. P P E N D X.

Then proceed from 28 in the ratio of 96 to 49 : Thus, as 96 is to 49 fo is 28 to $141-3 \mathrm{~d}$, the chord of the arch through which the center of the board afcended after the ftroke. Now to find the verfed fine of an arch, whofe chord is 14 1-3d; and radius 49 , fay, as 98 (the duplicate of the radius) is to $141-3 \mathrm{~d}$ fo is $14 \mathrm{I}-3 \mathrm{~d}$ to 2,2 .

Now the velocities acquired by falling bodies are as the fquare roots of the heighthe fallen from: and as a body falls by its gravity 16 feet $\mathbf{1 - 1 2 t h}$ in one fecond, and acquires a velocity to carry it unformly through 32 feet $\mathrm{r}-6 \mathrm{th}$, or doube the former fpace in a fecond; we have, as the fquare root of $16 \mathrm{I}-\mathrm{I} 2$ th, or the fquare root of 193 inches, is to 32 I -6th; that is, as 13,9 is to 32 I -6th, fo is 1,49 to near 3 feet in a fecond, the velocity which would carry a body to this height; or, which is the fame thing, the velocity which a body would acquire by defcending thro" this fpace.

- To determine then the velocity, no more is ' neceffary than to multiply. 3 by 212 , and the ${ }^{6}$ refulting number, 636, will be the feet the - charge of fhot would defcribe in a fecond, if it ' moved with the velocity it had at the moment - of its percuffion. But this velocity is to be in: - creafed in the duplicate ratio of the diftances of * the points of ofcillation and percuffion from the K
axis
' axis of fufpenfion. That is to fay, as the fquare - of the ofcillating-diffance is to the fquare of the ' percuffion-diftance, fo is the velocity here found ' to the true velocity.' Thus, as 2186 is to 240 I fo is 636 to 695 feet in a fecond, the actual velocity.
- And fince the length of the ribbon drawn is - always nearly the chord of the arch defcribed - by the afcent, and thefe chords are known to - be in the proportion of the velocities of the pen-- dulum acquired from the ftroke; it follows, that c the proportion between the lengths of ribbon - drawn out at different times, will be the fame c with that of the velocities of the impinging fhot; - and confequently, by the proportion of thefe - lengths of ribbon to 28 , the proportion of the c velocity with which the fhot impinge, to the - known velocity of 695 feet in a fecond, ' will be determined.' Suppofe it be requir'd to find how many feet in a fecond the fhot impinged with to draw the ribbon out 20 inches: fay, as 28 is to 695 fo is 20 to 460 feet, the anfwer.

Whilft I was making the experiments at the pendulum, it came into my mind, that the proportionate velocities with which thot are thrown from guns of different lengths and bores, might be difcovered by fhooting at a mafs of ftiff-tempered clay, at fuch a diftance, that a fufficient number

A P P E N D I X.

number of the fhot might be thrown into the mafs, to take the medium of the depths they were funk into the clay. I therefore formed a cube of clay, cleared from ftones, and well beaten, as ftiff as poffible to be found: this having fix fides, I had opportunity of making fix fhoots, either from different guns, or with different charges: from which I made the following experiments.

Some experiments made to try the velocity or force of loot, by firing at a ma/s of fiff-tempered clay at thirty-five yards diftance.

No. 3. A gun two feet fix inches the barrel; the weight of the whole gun five pounds fix ounces; the bore fix-tenths diameter.

Powder. Grains.	Shot. Oz . qrs	Sunk deep Inch. eighths
80	1 I	13
	12	12
-	20	10
	22	- 7
	20	1

No. 5. A Spanifh barrel three feet five inches; weight of the whole gun was fix pounds; and fix-tenths of an inch bore.

$$
\mathrm{K}_{2} \quad \text { Powder. }
$$

A.PPENDIX.

The depth of the thot-holes made in the clay in the above experiments was taken as nearly as I could at a medium: for they were not all of a depth at each fhoot: which I attributed partly to the inequalities of the fhot, though of the fame number, and partly to fome fmall fones that might be left in the clay, though it had been well picked and tempered. I therefore cut the clay into thin flices, dried it, beat it in a mortar, and fifted it, then wrought it again into a mafs which was well beaten, and formed a cuhe of about fix inches diameter. This mais was not fo fliff as the lart ; which I ordered purpofely that the thot might fink farther into it, The experiments made with it were as follow,- The wad ufed in thefe experiments was flamped out of lift.

No. 4. The gun two feet fix inches the bart rel, lix-tenths bore, and weight of the whole gun five pounds eight ounces, being opened a little towards the breech,

Powder:

A R PENDIX.

Powder, Grains,	Shot. Or. qris.		Sunk deep Inch. eighth	
80	1	1	2	3
-	1	2	2	2
	2	0	2	0
	2	2	1	6
	3			-

No. 6. A gun three feet five inches the barrel; 5 -8ths bore; weight feven pounds and one quarter;

Powder, Grains.	Shot. Dr. iqrs.		sunk deep.	
80	1	1	1	7
\square	1	2	I	7.
-	2	-	1	6
\longrightarrow :	2	2	\pm	6
	2	\bigcirc	mad	2

Though in chefe experiments the fhot were funk deeper into the clay than in the former; the depth was not more regular: fo that I prefer clay that is temper'd as ftiff as is compatible with making a found mafs of it.

I order'd another mafs of clay to be temper'd. very fiff; to try two guns at of a larger bore: but firft made one fhoot with the gun, No. 3. by way of ftandard to refer to.

The gun, No. 3. with 80 grains of powder, and two ounces of hot, at 35 yards, funk into the clay - I 1-4th.

One, No. 7. the barrel two feet feven inches, and 6-8ths bore, with the fame load; weight of the gun fix pounds
Ditto with 92 grains of powder, and two ounces and a half of thot I

A gun, No. 8. the barrel three feet fix inches, and 6-8ths bore; weight of the whole gun fix pounds twelve ounces; with 80 grains of powder, and two ounces of fhot - 1-4th.
Ditto with 92 grains of powder, and two ounces and a half. of thot \cdots i i-8th.

In the experiments made with the guns two feet fix and three feet five inches at the firft mafs of clay, there appears to be no difference in their velocities, tho the barrels were of the fame bores. I therefore conclude the fmall barrel to be the beft.

In the experiments made at the fecond mafs of clay, the barrel three feet five inches being the largeft bore to try it fairly, it ought to have had
had a greater load: for the fhoots from that of two feet fix inches are greatly fuperior.

From the experiments made at the third mafs of clay, that the barrel two feet feven, fix-eighths bore, did not throw the fhot with fo much force by one fifth part with the fame load; and that when half an ounce of fhot was added to the charge, it required twelve grains weight of powder, to give the fame velocity the fhot had from the former charge.

That the barrel three feet fix inches, and fixeighths bore, threw the fhot with only the fame velocity as the barrel two feet fix inches, and fix-tenths bore. So that there appears to be no other advantage in fhooting with thefe larger bored barrels, than their carrying a larger load. Whereas, 92 grains weight of powder and two ounces and a half of fhot, feems to be as much as any man will care to ftand againft.

I could with pleafure have made more experiments, both at the pendulum and clay: but my health at this time could not permit it. However, as the method for both are here fully given, every one may fatisfy himfelf with as great a variety of experiments as he pleafes: and I doubt not but it witl afford more pleafure to thofe who have leifure, than many other trifling diverfions, in which men often wafte their time

A. P PENDIX.

As the confideration of the refiftance of the air is a fubject of the greateft importance to the perfection of gunnery: I think it would be a culpable omiffion not to fay any thing on that head, tho' of no great confequence in fhooting flying: becaufe few perfons will ufe fo large a quantity of powder in proportion to the charge of fhot, as to have it retard inftead of increafing their velocities.

Mr. Robins, from computations confirmed by fucceeding experiments, makes it appear, ' that ${ }^{t}$ a leader ball of $3-4$ ths of an inch diameter, and ${ }^{2}$ weighing nearly $\mathrm{r}-3 \mathrm{~d}$ oz. averdupoize, if it be r fired from a barrel of 45 inches in length, with ${ }^{t}$ half its weight of powder, will iffue from ' that piece with a velocity, which if it were - uniformly continued, would carry it near 1690 ' feet in one fecond: and that the refiftance of t the air on a bullet firft moving with that veloci' ty amounted to 10 pounds, which is 27 times its ك. own weight. That an iron bullet weighing 24 © pounds, if fired with 16 pounds of powder - (which is ufually efteemed its battering charge) ${ }^{8}$ acquires a velocity of about 1650 feet in a fe? cond, fcarcely differing from the other. Whence, ${ }^{\circ}$ as the furface of this laft bullet is more than - fifty-four times greater than the furface of a ' bullet of $3-4$ ths of an inch in diameter, and - their velocities are nearly the fame; it follows; ' that

A P P E N D I X.

* that the refiftance on the larger bullet will amount
- to more than 540 pounds; which is near twenty 6 three times its own weight. And if the charge - of powder be increafed, the refiftance of the ' air will be increafed: confequently, though in-- creafing the charge of powder will increafe the ' velocity of the fhot, till the powder arrives at - a certain quantity; yet after this if the powder - be increafed, the velocity of the thot will de' creafe.'

The fhot generally made ufe of by fportfmen for thooting flying, are No. 3. No. 4. and No. 5. and are in the proportion of $300,400,500$, and 600 , in every two ounces of hot of each number; which is a very proper load for a bird-ing-gun of a middle-fized bore. Now the fmalleft of thefe numbers are made ufe of by fome, on account of their flying thicker, and thereby having the greater chance of difabling the wing. But as birds are fo frequently loft when only winged; and if only three fhot take place in the body of the bird, it will be more certain of killing the bird than fix of the fmaller ones; 1 believe the advantage wifl be in thofe of the larger fize: but No. 4. will do very well 'till Michaelmas, for partridge-fhooting; after which time No. 3. I hould think the beft: becaufe birds will then fly ftronger, and are not fo eafily brought down with thofe of No. 4.

$$
74
$$ A P P E N DIX.

The proportions of the furface of a fingle thot of each of thefe numbers are nearly

As ${ }^{\prime}$	7,368ı	6,0822	5,	and 4,6415
Whichmultiply'd	300	400	500	600
Give	22,1043	24,3288	26,2075	27,8490

The proportions of the refiftance upon the charge of two ounces: for thefe laft numbers exprefs not the abfolute quantities of the furfaces, but the proportionate quantities of furface of 3,45 , and 6 hundred fhot to each other. By comparing which it appears, that there is fo great a difference as $\mathbf{1}-4$ th of furface more on the charge of No. 6. than there is on the fame charge of No. 3. confequently the refiffance of the air is fo much greater on No. 6. and as there is but half the quantity of matter in each fhot, their velo. city is not half fo great as thofe of No. 3. which muft, I think, be fufficiently clear to thofe who confider it.

It is well worth while for any perfon to fatisfy himfelf by making feveral thoots from the fame gun, at a cube of clay at different diffances, as 20,30 , or 40 yards, with a proper load of powder and fhot of No. 3. and then repeat the fame trials at the other three fides of the clay, with the fame gin and load at the fame diftances, but with fliot of No. 6. taking the medium

A P P E N DIX. $\quad 75$

dium of the depth of the fhot-holes from each fhoot; or he may make the like experiments with fhot of any other fizes, and at any diftances he likes, by comparing of which he will be able to determine what fort of thot will beft fuit his purpofe.

The refiftance of water is 850 times greater than that of air: and by increafing the velocity, it will fometimes refift as much as a folid. I fhall give you the following remarkable experiment, mentioned by Dr. Defaguliers, to confirm this affertion. A fail was fpread horizontally in a pond, about two feet and a half under the furface of the water; and a mufket with a fmall charge being fir'd obliquely to the furface of the water, but perpendicularly to an half-inch dealboard fixed under the water over the fail; the bullet went through the board under the water, and after that through the fail-cloth. The experiment was made agaiu with a greater charge; and the bullet ftruck againft the board, without going through it, making but a fmall impreffion in the board; yet its roundnefs was alter'd more than the refiftance of the botrd feem'd likely to have caufed; and therefore the bruife in the ball was thought owing to the refiftance of the water. Upon increafing the charge a third time, the ball fell upon the fail, without reaching the board, and was much beaten out of Chape. At laft, putting in a charge nearly equal to the L_{2} proof,
proof, (that is, the weight of powder equal to the weight of the bullet) the bullet was beaten ta pieces upon the furface of the water.

This great refiftance of water was farther confirmed by an accident which happened in firing off fome water-rockets (upon the Thames) whofe property is to go under water feveral times, and rife again, and at laft burft above the water. One of them in its laft rife ftopping under the middle of a barge, broke there, and made fo great a hole in the barge's bottom, that there was only time for the company to fhift into another barge which was near, and the waterman to row to thore from the middle of the Thames (at Mortlake, where it is but narrow) before the barge was half full of water. Here the water refifted like a folid; and confequently the powder made its way through the wood, which was lefs denfe, and not very thick.

F. I N I S,

A

 CATALOGUE

 CATALOGUE 0 F

Clocks, Watches, Guns,

And other Machines,

MADE AND SOLD BY

T. PAGE, NORWICH.

DOCKET Watches, in Gold, Silver, or Metal, chafed or plain, or with Shagreen Cafes.
Repeating, Striking, or Horizontal ditto.
Clocks of all Sorts, for Houfes, Turrets or Steeples. Watches and Clocks carefully repaired.
Brafs Jacks of feveral Sizes, to carry any Number of Spits, and with a perpendicular Motion, if required, to roaft Meat hanging.

Neat Brafs Pullies for ditto, or wooden Pullies in Brafs-Frames.

Birding-Guns of various Lengths, Bores, and Prices.

Piftols for Holfters, and flat ones for Holfters or Pockets.

Crofs-Bows for Bolts or Bullets.
Guns mended, ftocked, or locked.

G ATALOEGUE, \&c.

-Iron-Screws, with Brafs-Bozes, for Hot-preffers, or any other Sort of Preffes.

All Sorts of Machines for ftrengthening the Weak or Lame, or making Extenfion of broken Limbs.

Steel-Truffes, for Ruptures of Men, Women, or Children, having had upwards of thirty Years experienced Succefs.
all Sorts of Silver, and Jewellers Goods.
Beft double ftrong Gunpowder, and Gun-Flints.
N. B. The beft Prices given for Old "Gold, Silver, Brafs, \&cc.

[^0]: No. 9. A five feet barrel of the fame bore and load:

[^1]: ' Hence it appears, that the goodnefs of pow' der is not to be eftimated from the quantity r of falt-petre only contained therein; although f that-fubfance feems to be the bafis of the elafs tic fluid in which its force confifts. Nor is it s the due proportion of the materials only which ' is neceffary to the making of good powder : an' other

