

T R E A T I S E

ARTILLERY:

CONTAINING,

I. General Conftructions of Brafs and Iron Guns ufed by Sea and Land, and their Carriages.
II. General Conftructions of Mortars and Howitzes, their BedsandCarriages. III. Dimensions of all Carriages ufed in Artillery.
IV. Exercise of the Regiment at Home, and Service Abroad in a Siege or Battle.
V. ItsMarch and Encaípment, Ammunition, Stores, and Horses.
VI. Lafly, The neceffary I.aboratory Work for Fire-Ships, \&c.

To which is prefixed,

An INTRODUCTION, W ITH

A Theory of POWDER applied to Fire-Arms.

The THIRD EDITION, With large Additions, Alterations, and Corrections.

By JOHN MULLER, Profeffor of Artillery and Fortification, And Preceptor of Engineering, \&cc. to his Royal Highnef's the Duke of Gloucester.
LONDON:

Priated for Joun Milean, Whitehall. 1780, Where may be had, Muller's Mathematics, Fortification, Attack and Defence, Field-Engineering, \&ic. 8 Vols.

3: 2

- N1 Wh.
I

$$
5-40
$$

$$
r_{2} \mathrm{sif}
$$

\qquad

$$
4+8+1-x=3
$$

\qquad

\qquad

T 0

HIS ROYAL HIGHNESS

The Duke of Gloucester, \&c.

THIS WORK

Is moft humbly Dedicated, - B Y

His Royal Highnefs's

Moft devoted,

Moft obliged, and

Moft obedient Servant,

JOHN MULLER.

COMNTNTS.

15 The new Articles are marked with an Afterifin *. .

- INT RODUCTIUN, the origin of artillery Page i
* Ibe firf guns invented by king Vitey in 85 ibid.
- Ligbt field pieces introduced by col, Weideman Experiments on the ranges of guns
Table I, H, III, lengtb and weigbt of French gums ix Gen.Armftrong's experiments on the length of a 24 pounderxi General Williamfon's experiments on the befl. lengtb and cbarge of an 18 pounder
The autbor's experiments with mortars on the beft figure of chambers, and on the beft fituation of the vent. xix Ibeory of powder, and its application to fire arms xxvi - A new confiruction of $\{$ brafs guns for land fervice xxxvi A table of the greateft velocities, and the greateft ranges, which the different calibers can poffibly bave xxxviii
* A table of the diftances that Joips may be feen, from one yard to 50, by the obferver's eye, above the furface of tbe water

PAR T. I.

* Of artillery, containing the weigbts and meafures I Diameters of the 乃oots and bores of guns

CONTENTS.

- Inveftigation of a general rule for finding tbe fums of fories's applied to the finding the number of jbor contained in any pile - Page 21
- 4 table of tbe number of bot in 1620 piles - 26

$$
\mathbf{P A R T} \mathbf{I}
$$

Conftruction of guns - 26
Nemes of the feveral parts of a gun -.27
Gen. Armftrong's confiruetion of brafs and iron guns 29
Examination on the feveral parts of a gun - 33
General confirualion for brafs battering pieces - 46
To find tbe weight of metal of a gun $\quad 49$

- Length and weigbt of old and new battering pieces 50

Confruelion of iron battering pieces, with a table of their lengtb and weight - 52
General conflruction of iron Joip guns $\quad 53$

* A table of their length and weight
- General conftrufion of brafs Jbip gans, with a table of the lengtb and weight of old and new - 56
- A table comparing the weigbt of the old and new guns of all the different rates in the prefent eftabligbment 58
- Number and caliber of guns on board the jeveral men of war.
Conftruefion of ligbt field pieces, with a table to compare the length and weigbt of the prefent witb the new . 61

P A R T III.

Conftructions of mortars and bowitzes - 65
Dimenfions of $\left\{\begin{array}{l}\text { the prefent land mortars } \\ \text { fea mortars } \\ \text { bowitzes }\end{array}\right.$
Remarks on the conftructions of mortars - 70
General dimenfions for new land morturs $\quad 74$
Remarks on tbefe dimenfions - - 75
To find the weight of metal and powder - 78
General dimenfions for bowitzes - - - 80
Weigbt of borvitzes and powder - - $\quad 82$

CONTENTS.

Conjfrution of $\left\{\begin{array}{l}\text { guns } \\ \text { pip and garijon }\end{array}\right\}\left[\begin{array}{l}94 \\ \hline\end{array}\right.$
Dimenfions of bip and garrijon
General Conitrultion of Jucb
lrons of bip
Confrultion of travelling
General dimenfions of travelling
Iron work of travelling -
Dimenfions of wheels for thefe
Toois neceflary for loading and proving guns 110
Conftrulion of carriages for ligbr field pieces 112
Dimenfions of $\left\{\begin{array}{l}\text { a galloper carriage } \\ \text { limbers }\end{array}\right.$
PART V.

Of mortar beds and bowitz carriages
Dimenfions of $\left\{\begin{array}{l}\text { land mortar beds } \\ \text { fea mortar beds } \\ \text { an eigbt incb bowitz carriage }\end{array}\right.$
PART. VI.

Different forts of carriages ufed in artillery 125

CONTENTS.

Praclice of artillery at bomer and fervice in war 147, 148 Mortar pralice - - 153
Praflical rules for borizontal ranges 2 깬 156

PART VIII.

Artillery and fores neceffary for a field equipage $\quad 176$
Quantity of powder and. Bot for an army - 177
Powder and fot for mufkets, carbines, and pifiols 178
Number of borfes ufed $\left\{\begin{array}{lll}\text { for guns } \\ \text { in the campaign of } & 1747 & 189\end{array}\right.$
Stores for the army in 1747 - 183
General Belford's march of the artillery - 192
The manner of forming a park of artillery - 195
Laboratory works - - 200
Defcription of $\begin{cases}\text { a fireßhip, and fitting it up } & 207 \\ \text { and manner of preparing fores. } & 208\end{cases}$
Difpofition of fiores on board, when laid for firing 211
Stores for a firelbip of 150 tons - 213
Compofition for preparing the fores of a firefbip 214

- Conftruction of batteries, with a table of the tools, mater rials, and number of men, to fini/h them in one nigbt ibid.

INTRODUCTION.

THE origin of fire arms and artillery is owing to the difcovery of gun-powder; but when this was, or in what country, we are ignorant of: it is however probable, that it mutt have been in the eaftern part of the world, becaufe faltpetre, which is the priacipal ingredient, is found in great plenty in fome provinces on the furface of the earth, and from thence is brought to Europe ever fince its ufe has been known; and faltpetre being mixed with fulphur, or fome other combuftible fubflance, either by chance or otherwife, produced a power by its explofion not known before, whereby bodies could be thrown to a great diftance.

It is generally fuppofed that the Cbinefe were the firt that made this difcovery; for Ufano Valefco, a Spanijs author, mentions, that powder and guns were found in Cbina in the year 85 , by king Vitey; but whether it was known before in any other country is uncertain.

The firft difcovery of powder in Europe was made by Bartold Scbwartz, a Monk, at Mentz, in $\mathbf{1} 320$, by accident ; being a chymift, he happened to mix fome faltpetre with fulphur in a mortar, and covered it with a ftone; the compofition accidentally taking fire, the explofion blew the fone to a confiderable diftance. This fuggefted the notion, that if this compofition was properly confined, it might be ufeful in the attack and defence of places: and from thence the invention of guns may be dated in Europe.

ii
 INTRODUCTION.

Roger Bacon, who lived about 50 years before, men:tions a compofition known in his time, by which thunderand lightning could be imitated: Scbwartz was the firft who applied it to military ufes.

It is faid that the Venetians made the firt ufe of guns at the fiege of Claudia $\mathrm{Je}_{\mathrm{e}} \int \mathrm{Ja}_{\text {, now }}$ nowled Cbioggia, in 1366, which were brought there by two Germans, with fome powder and leaden balls; but father Daniel proves from records, that the French had guns in $133^{8 .}$ As the invention of guns is fo immediately connected with that of powder, it could not well be otberwife than that Scbwartz was the inyentor of both; and that they were from thence carried to France, and afterwards to Italy.

Some authors fay, that the firft guns were made of iron bars laid lengthways, and kept together with ftrong iron hoops; and others, with thin theets of iron rolled up together and hooped; but which way they were made, it muft have been in a rude and imperfect manner, like the firft effays of many new inventions.

The firft guns were but fmall, and their hot of lead; but afterwards, when their ufe became better known, they were caft of gun metal, and of extraordinary fize; and their fhot were made of ftone : for the Turks had fome at the fiege of Conftantinople, that threw a weight of 500 lb . and Louis XI. had one calt of the fame fize; many others are mentioned in hiftory, which carried fhots that weighed from 80,90 , to 100 pounds.

But as thefe guns were fo very heavy, and could not be tranfported without great dificulty, they have been reduced to fmaller calibers, and made their hot of iron. Since that time the largeft caliber that were ufed was a 48 pounder; but at prelent no larger are made in the land fervice than 24; and at fea 42 pounders.

It was long imagined, that the more powder a cannon was loaded with, the greater its execution would be; for which reafon they were loaded with as much powder as

INTRODUCTION.

their thot weighed, and to refitt fo great a force, they were made sery heavy, and of a great length, in order to give time to the powder to burn all before the fhot left the piece.

This great charge was diminifhed afterwards to two thirds, and then to one half, withour leffening the weig ht of the guns, or their length. The chevalier Belidor made fome years ago feveral experiments relating to the charge of battering pieces, whereby he found that one third of the weight of the foo was fufficient, and the French ufed no more during the two laft wars: it is very probable that lefs might do ; for fome experiments were made at Woolwicb with light field pieces, and it was found that one fourth and even one fifth was fufficient for the charge of thefe pieces.

Notwithiftanding the great importance it would be to a nation to have its artillery carried to fuch perfection, as to make ufe of as little metal and workmanflip as poffible, and at the fame time to bring as many and as large calibers into the field as others, "thereby reducing its immenfe expence to as little as is abfolutely neceffary; yet it will be found upon examination, that very little improvement has been made in the proportions of guns fince Dilicbius, a German, who wrote near 200 years ago.

It is true St. Remy, a Frencb author, publifhed in 1723 the moft compleat and extenfive Treatife of Artillery, in two volumes in quarto, that is extant; which has fince been much improved in the laft Paris edition, in three volumes, publifhed in 1745, containing all the improvements made in the artillery fince the firft edition: but as it is only a collection of memoirs he received from the different artificers employed in thefe works, and who had no other knowledge than bare imitation, it could therefore not be expected that what they tranfmitted to him was grounded upon fuch mechanical principles as depended upon mathematics, without which no real improvements can be made.

INTRODUCTION.

All the authors that wrote fince have done no more than copied his works in an imperfeet manner, even the German authors follow him, though it is plain that the Frencb have chielly copied Dilicbius : for their field carriages are exactly the fame to this day as he has delineated them in his work ; and as to the alterations they have made in the proportions of guns, they are trifling and very, little to the purpofe.

If we confider the various lengths and weights that have been given to pieces of artillery at different times by all nations, it will appear, that no principle is fo uncertain and unfettled as that upon which the artillery artificers have grounded their conftructions. For in quien Elizabetb's time they made fome 18 pounders 24 feet long, cafcable included, fuch as the culverin in Dover. Gafte, and that at Nancy; and in king Cbarles the fecond's, Count Mansfield made fome 6 pounders that weighed but 180 lb . and 25 pounders of 700 lb . as is related in the account of the fiege of Breda by the Spa. miards under the command of Spinola; and about the fame time the Spaniards caft fome others not much heavier; one of them we had at Woolwich was 7 feet, long, weighed only $21: 3: 4$, and carried a fhot of about 41 pounds of our weight.

Though thefe light pieces were then highly efteemed for their eafy carriage and facility of working, yet much heavier and longer have been made ever fince without any manner of reafon, till 1744, when Colonel Weideman, a German, brought light pieces in ufe again as a new invention of his own. His pieces were made of theets of copper rolled up and foldered together; they were fo very light, that a 6 pounder weighed no more than two hundred and a halt, and yet ftood all the proofs that were required.

This gave rife to our light field pieces; but it was not without great difficulty that they were received, and nolefs than the exprefs command of his royal highnefs the late duke of Cumberland, could have prevailed over

INTRODUCTION.

the fervile attachment for an old eftablifhed cuftom though ever fo erroneous, which, when once covered by the veil of time, becomes in a manner facred.
But even lighter field pieces than the prefent might be ufed; for on the 12 th of June 1751, fome experiments were made on Putney.Common by baron Stark, a German, with a piece made of a new metal of his invention; which piece was a 6 pounder of 3 feet and a half long, and weighed $3: 2: 0$, as he faid, and it was fired 300 rounds in three hours and 45 minutes, being loaded each time with a pound and a quarter of powder, without receiving the leaft damage.

This trial being reported to lord Ligovier, then mafter general of the ordnance, he and the reft of the principal officers of the board refolved to try our light 6 pounders, in order to know whether they would ftand the fame trial or not; and accordingly, on the 15th of fune, my lord pitched upon one amonggt thofe that had been uled at the battle of Lafeldt. This piece was four feet and a half long, and weighed $4: 3: 0$; and after being fired 300 rounds in three hours and 27 minutes, loaded with the fame charge as that above, was found not to have received the leaft damage. The fame trial has been repeated afterwards with a gun of the fame dimenfions as the former, which had been made by another founder, and it fucceeded as well.

Thefe trials fhew, thatthofe light pieces are fufficiently ftrong for any action ever fo obftinate; and that pieces in general may be made lighter than they are at prefent, appears fiom feveral other trials made fince with light brafs pieces, according to my conftruetion, as will be fhewn hereafter.

It is faid that fuch light pieces would not do for battering breaches, nor on board of Chips, becaufe of their recoiling too much; but-it fhould be confidered, that batteries made upon thefe occafions are always, or ought to be near the object, and the charges now ufed are but half the former, becaufe a Ihot, which has a fufficient velocity

INTRODUCTION.

velocity juft to enter the wall, Thakes it more and defroys it fooner than if the velocity was much greater. This is a matter of fact grounded upon experience.

It is fuppofed at prefent, that no lefs caliber than a 24 pounder will do to make a breach; and it may fo happen, that the heavy pieces cannot be carried through bad roads, as in America, or over high hills, as in Scotland. Upon thefe occafions it feems to be abfolutely neceffary to have light pieces : for which reafon we have given a new conftruction of light pieces in page 62 , where the weight of a 24 pounder is $18: 1: 5$; which differs in fome things from thofe ufed at prefent : becaufe mine are made the fame number of calibers long, and their weights in proportion to that of their fhot, as we fhall prove hereafter they fhould be; whereas the large calibers of the prefent are made fhorter and lighter in proportion than the fmall; and it has been found by experience, that the prefent light 24 pounders recoil too much, let the hind part of the platform be ever fo much raited.

Artillery has hitherto been confidered merely as practical, without conceiving that for want of the mechanical principles deduced from mathematics, no improvements can poffibly be made. For all the experience of the artillery officers catnnot be of any ufe in the conftruction of pieces, as their bufinefs is to make the beft ufe of them, and not how they are made, neither are they ever confulted upon that fubject.

To put the artillery upon a better footing than it has hitherto been, proper experiments fhould be made in time of peace, and by fuch as have fufficient knowledge, fo as to be able to draw juft inferences, which is feldom the cafe, as it appears by thofe hitherto made, and which will be inferted hereafter, where it will be fhewn how little the moft of them may be relied on.

It is certain, that in moft cafes common geometry and the principles of mechanics is fufficient; but there are others which cannot be determined without the higher principles

INTRODUCTION

principles of mathematics. For how can the velocities of fhots and fhells be determined withour being acquainred with the laws of refiftance, and which cannotbe known without the ufe of fluxions, nor the finding the curve defcribed by the fhot, which is one of the moft intricate cafes? Again, the proper length and charges of pieces cannot be determined without the laws of motion in a refifting medium : it is true that experiments may be made for that purpofe; but how far we may depend on them, without being confirmed by a proper theory, will appear hereafter.
A.remarkable cuftom has prevailed all over Europe, which is the making fmaller calibers much longer in proportion than thofe of a higher nature; imagining, I fuppofe, to increafe thereby the velocity of the thot, without knowing that a piece may as well be too long as too fhort; as long as this pernicious cuftom prevails, no improvement can be made in artillery; for as a greater number of fmall calibers are ufed than large, and the fmall are thereby as heavy again as they need be, were their length of a juft proportion.

Had it been known that every caliber has but one determined length and charge by which it will carry its fhot farther than any other greater or lels, and that it cannot exceed a determined velocity, let the fhot be impelled by any force whatever, and that thefe velocities are always in proportion to the diameters of the fhot, this practice would not have been followed. But as the demonftrations of thefe principles depend on the method of fluxions, which would not have fo well fuited in a practical treatife as this, I was obliged to write a treatife, where every thing relating to artillery, not inferted here, will be found.

To fettle artillery upon a proper foundation, we thall relate all the moft remarkable experiments made here and abroad, beginning with thofe inferted in St.-Remy's memoirs, volume i. page 114, which are faid to be the oldeft upon record.
,

INTRODUCTION.

It is eafily perceived, v, vith Ranges in Paces, that no dependance can be had on thele experiments. For it is a plain contradiction, that the point blank ranges of a 24 and 16 pounder flould be longer than that of the 33 pounder; and that the random range of thefe laft guns thould be no more than that of the 24 pounder. Again, the 16 pounder random range to be fo much greater than the reft.

Calib. Point blank. At random:		
33	600	6000
24	800	6000
16	800	8000
12	450	5000
8	300	3000
4	150	1500

As neither the length and weight of pieces, nor the weight of the charges are mentioned, though the experiments were true, no ufeful inferences can be drawn from them.

Monfieur $d u$ Metz, lieutenant general, made in his time the following experiments on the ranges of guins, by which he found that the Frencb pieces loaded with two thirds the weight of the fhot, and thofe of the new invention loaded with one third, yanged the fame diftances when elevated at an angle of 45 degrees.

As neither the length or the weight of the pieces are mentioned, nothing

Calib	Raoges.
24	2250 Toifes
16	2020
12	1870
8	1660
-4	1520

INTRODUCTTION.

If this be true, all that can be concluded is, that 10 feet is a better length for a 24 pounder than for any other caliber, when loaded with a weight of powder equal to the two thirds of their fhot; bur as no piece is loaded at prefent with that charge, thefe experiments can be of no ufe.
There are feveral tables of the lengths and weights of the French pieces ufed at different times not ipecified, except the laft of the prefent.

That which feems the oldeft is the following, pag. 73, volume i.

This table fhews how rude and imperfect the firt trials of artillery were, and what enormous length the fmaller calibers were made in thofe times.

It is alfo to be oblerved, that the 24 pounder, tho' 13 feet long, weighed no more than 4300 lb . whereas the prefent of 10 feet weigh 5400 lb . If the former were found to be fufficiently ftrong, what sould induce them to load hem with fo much metal how ? All that can be faid s, that if experiments are nade for a particular fancy nly, and are not enquired toto by the fucceffors, all he attempts an author can nake for improvement re vain and ufelefs to the ublic.

Calib.	Length.	Weight.
48	Feet Inch. 10: 0	72001 b .
40	16:6	7000
32	$22: 0$	7200
24	13:0	4300
20	16:0	7000
16	18:0	4200
12	11 : 0	4250
10	$13: 0$	3850
8	15:0	3500
4	12:6	2500

x

INTRODUCTION.

In the table facing page 207, vol. ii. are marked the following dimenfions,

This table thews that the length and weight of pieces were better proporcioned in that time than they were before : but that the length of the 24 and 16 pounders fhould be the fame as that of the $33 ;$ as likewife the 8 and 4 to be of the fame length, fhews the little reafoning made ufe of in that time.

The laft regulations that were made in 1732, and which are followed at pre-

Table II.

Calib	Length.	Weight
33	$10: 0$	62001 l
24	$10: 0$	5100
16	$10: 0$	4100
12	$10: 0$	3400
8	$8: 0$	1950
4	$8: 0$	1300

That the weight of thefe guns is greater than they need be, appears from our iron 24 pounders weighing no more than 4800 , which is even too much, as will be fhewn hereafter; and according to this proportion, the fet of them contains 3250 lb , of metal more than the ftrongeft conftruction requires.

It muft be obferved, that the French reckon by

Calib.	Length.	Weight.
24	10: 1. 5	5400lb.
16	9:6	4200
12	9:0	3200
8	8:1	2100
4	6:9	1150

INTRODUCTION:

our poundss fo that a French hundred neat wetght is more than our hundred of 112 pounds.

We fhall now come to the experiments made at home, or under the direction of Engli/b officers. The firft on record that came to my knowledge are thofe made by general Armffromg, furveyor-general, in 1736 , which are:
The length of thefe pieces are expreffed in feet and inches, and the ranges in yards: out of a great many trials, three of the longeft ranges of each piece are fet down here. All thefe pieces were brafs 24 pounders, and all weighed nearly 5200 , and were always loaded with two thirds of

Length	Range: Range	Range.	
$10: 6$	2486	2614	2406
$10: 0$	2570	2532	2436
$9: 6$	2633	2560	2500
$9: 0$	2796	2494	2563
$8: 6$	2586	2490	2466
$8: 0$	2438	2470	2453

The intent of thefe experiments was to find the beft length for a battering piece; when loaded with the common charge then given; and that of 9 feet 6 inches was fixed upon as the beft, though the firt and laft of the 9 feet ranges were the longeft of thofe in the fame columns : this was owing, I fuppofe, to this length being more convenient for battering than that of 9 feet long.

If we examine ftrictly into thefe experiments, it will be found, that no improvement can be made from them. For no two guns can be equally bored, and the leaft difference may caufe a confiderable one in the ranges: nor no two vents can be pierced fo as to come out at the fame diftance from the bottom of the bore, which is of the greateft confequence, as we fhall prove from repeated experiments.
But

INTRODUCTION.

sif But fuppofing all the piecest were exactly bored alike, and the vents placed the fame; what other conclufion could be drawn from thefe experiments, than that the beft length of a 24 pounder is 9 feet 6 inchés when loaded with 16 pourids of powdento I is not probable, that if a lefs charge, was ufed, as at prefent is the cafe; this length would be the beft ; neither can we draw any inferences from them in refpect to the length of greater

It is not fufficient to make experiments without $/$ any intention of their being ufeful towards the improvement of artillery in general, and fuch as proper conclufions may be drawn from ihem; otherwife the greateft ofe they can be of, is to determine fome particular cafes only, which are by no means fufficient.
The beft and moft ufeful experiments that have hitherto been made, are thofé of general Williainfon's, affifted by major Hiflope, and feveral other officers of artillery, which f fhall infert here, as taken from major Iiflope's account.
Experiments made at Mabon in Minorca in 1745; with two iron 18 pounders, one of in feet long, which weighed $51: 0: 5$; and the other of 9 feet weighed $39: 1: 3$. They were fixed upon a rocky ground, and fo contrived as to be elevated to any number of degrees.

Hence it appears, that when the pieces were loaded with 9 pounds of powder, the range was greater than when loaded with more or lefs.

Again, that the pieces of 9 feet long carried farther than thofe of 11 , in almoft all the fame circumfances, though the firft is lighter than the fecond; which fhews thai the length of the ranges does not fo much depend on the weight, as on a proper length, and on a proper charge.

The accuracy of thefe experiments is confirmed by the theory; for we have proved in our appendix, that the greateft range an 18 pounder can thave, when elevated to 45 degrees, cannot be quite equal to 4190 b 3 yards,

viv INTRODUCTION.

yards, becaufe we have fuppofed fuch a velocity as the Shot cannot poffibly have, but may continually approach it.

- Now as the greateft range in thefe experiments is 4160 yards, which differing only by 30 yards, the computed ones evidenily prove the accuracy of thefe experiments; and it proves with no lefs certainty; that 9 pounds of powder communicated the greateff velocity to the fhot that it pofibly could receive by any force whatever. 10 - When thus experiments agree with a theory founded upon unexceptionable principles, there cannot remain the leaft doubt of their certainty.

As 9 feet is nearly 21 diameter of an 18 pounder fhot, and 9 pounds of powder half the weight of the fhors and it is prefumed that pieces, whofe lengths and charges are proportional, will have their ranges likewife fo ; becaufe their greatef velocities are proportional to the diameters of the fhot, as we fhall prove in the appens dix: we may conclude with fome degree of certainty, that if the length of a piece of any caliber be 21 diameters of its fhot, and loaded with powder equal to half the weight of the fhot, it will carry farther than any other of the fame caliber. either longer or fhorter, loaded with any charge whatever.

Thus we have at laft determined that important queftion in artillery fought for ever fince its invention ; but to be entirely convinced of the truth of our deter~ mination, more experiments of this kind flould be made with various calibers ; but care fhould be taken that they may not be liable to any exception.

The moft certain way of proceeding, in my opinion, would be, to caft a gun of any caliber of 22 diameters of its fhot long; to examine whether it is truly bored, and that the vent comes exactly out at the bottom of the bore; then let it be fired with various charges and elevations, till there is a fufficient proof of its beft charge; this being done, a part of the piece muft be fawed off the length of its diameter, and the firtt trials

INTRODUCTION:

repeated as before: and when the beft charge and its range are afcertained, the length of the piece mutt be diminifhed again by the length of the diameter of ita fhot. Thefe trials being continued till the greateft fanges diminifies, then the beft length and charge will be afcertained of that caliber; and thofe of any other caliber may be found in the fame manner. The only care to be taken in thefe experiments, is to mix well the powder, and to dry it in the fun, that it may have always the fame ftrength as nearly as poffible : another caution muft be taken, which is, to make thele experiments in clear and ferene weather, and of the fame heat, becauife the powder will act more violently in a cold frofty morning than in hot weather, as ye fhall thew.

Though it is proper to know the beft length and charge of a piece, yet in real fervice their length depends moftly on the ufe they are made of, according to the different circumitances: thus fhip guns thould be fhort and light, fo as to be eafily houfed and loaded, becaufe the rammer handle is made of rope; in long pieces it muft be bent, which requires great care to ram the powder and fhot home; and when this is not done, the priming fires without the powder, which is always in cartridges; the failors thinking that the thot was difcharged, load it again, and mifs firing as before. This has been found fo for three times running, and when at Jait the powder in the firft cartridge takes fire, often burfts the gun, and deftroys the failors placed near to ferve it; whereas when the guns are fhort, the rammer handles may be made of wood in all fmall calibers, and the fervice become more expeditious. Befides, fhips now come fo near to one another, that the fhots are not required to go fo far ; provided it takes place it is fufficient.

The only objection againtt light guns is, that if they recoil too much, they will be apt to tear their tackle; but it has been found by experience, that half the ufual charge is quite fufficient, and perhaps lefs. If then the charge is diminifhed, the weight of the gun may like-

xvi

 INTRODUCTION:wife be diminithed, without increafing the recoil. This fhould however be done with difcretion, and not without proper trials; for hazards Thould be avoided as much as poffible.
Field pieces or battalion guns fhould be fhort and light, in order to be able to advance or retreat as faft as the armys fuch are thofe we make ufe of at prefent, with yery lietle alterations in the calibers above a 6 pounder. a Battering pieces, on the contrary, fhould be of a properlength to enter into the embrafures, that by their blafts they may not deftroy them too foon, becaufe it cannot be prevented entirely ; for which reafon the gunners repair them every evening when it is dark.

With regard to garrifon pieces, their length fhould be fuch as that the fhot may go fartheft, becaufe in a fiege they will oblige the befiegers to open their trenches at a greater diftance, which is generally without gun fhot; and in a fort placed near a navigable river, or the, fea, they will reach the fhips, when the flips cannot reach the fort.

For thefe reafons we make in our new conftructions the length of light field pieces 14 diameters of their fhot, the fhip guns 15 of thofe diameters, and the battering as well as the garrifon pieces 21; whereby the 24 pounder for battering becomes 9 feet 8 inches long; which is 2 inches more than the ufual length. We might likewife ufe a 32 pounder, which, according to our conftruetion, page 52 , would weigh but 5400 , that is, only 200 more than our prefent brafs 24 pounder. The intent of the following experiments, which I made in 1753 with two fmall mortars, was to find the propereft place of the vent, and the beft figure of the chambers : their bore was three inchés, and 7.5 long ; one had a cylindric chamber of one inch-diameter, and two long ; the other a concave in the fhape of an egg, with a fmall cylindric entrance of half an inch diameter; and the infide terminated by a fharp eige. Both thefe chambers held an ounce of powder at firt, but widened

INTRODUCTION.

y firing fo as to hold an ounce and a quarter afterards. Each had two wents, one in the minddle, aind he other at the bottom; I had a forew to top one when he other was ufedashe mortars weighed 36 pounds: ach, and the fhells 2 pounds 7 ounces at a medium. Ne have not marked the angles of elevations; becaule hey were unneceffary, only fo far as that they were the me, when the lower and upper vents were compared.

Colonel $D e f a g u l i e r s$ and myfelf made feveral other xperiments, together with a mortar of the fame fize hat had feveral fhifting chambers. The fubftance of what was moft remarkable in them are as follows :
A narrow cylindric chamber of about four inches ong holding 12 grains of powder, being loaded with grains by means of a thin cartridge : when the powder tas placed clofe to the fhell, fo as the lower part of the chamber

xviii: INTRODUCTION.

chamber was empty, and fired by means of a quick match introduced through the vent; and after this, it was loaded again with the fame charge placed at the bottom of the chamber, and the empty face between the fiell and the powder, the fhell went near twice the diftance in the firft experiment that it did in the fecond, and when the powder was placed in the middle of the chamber at an equal diftance from the bottom and the Ifell, the diftance or range was a mean between the two f(rmer. Thefe experiments were frequently repeated, and the tanges in the firft cafe were always nearly double thofe in the fecond. From what caufe it may proceed that the fame quantity of powder, placed in the fame fpace, fhould produce fuch various effects, is not in my power to conjecture.

The fame mortar being foaded with the fame quantity of loofe powder, I put a little piece of writing paper upon it, by which the thell went much farther than when loaded with the fame quantity of powder, without paper.

Three cylindric fhifting chambers of different lengths holding the fame quantity of powder, produced the fame range when full; but when they were not quite filled, the longeft produced the greateft range.

Two chambers in the form of a fruftum of a cone, the largeft bafe was at the hottom in one, and the fmalleft of the other ; the firf carried the fhell farther than the fecond.

The colonel tried two experiments more; the one between grained and mealed powder; and they were both found to be of an equal ftrength : and the other he put a fmall phial filled with water into the chamber amongft the powder, and found its ftrength confiderably increaled; that is, the thell went farther with the water than without it. The colonel tried likewife a cylindric chamber of about four inches long, with four vents, ane at the bottom, one at the upper end, and two in

INTRODUCTION.

the middle, all four at an"equal diftance from each other, fo that when one was ufed, the others were flopped by ferews; and he found that the lowett carried the fhell fartheft, and the ranges of the others diminifified ir proportion as they were diftant from the bottom.
Many ufeful obfervations may be made on thefe experiments. Firft, that the vent placed near the bottom of the chamber is more advantageous than any where elfe ; though this has been found fo in mortars, we are not certain that it is the farme in gons, which thould therefore be tried; and if it be found the fame, the query is, whether the bottom of the bore fhould not be flat, intead of roundilh, as is the cuffom, or to pierce the vent from the breech moulding, as colonel Weideman did, or elfe as the Frencb do in fome of their mortars, with a fmall cup at the end of the cliamber to receive the vent. From hence it appears how inaccurate expetiments have hitherto been made, and how neceflary it is to make new with all the neceflary precautions, in order to improve artillery, and to bring it to perfection.
Before thefe experiments were made, it was imagined, that when the vent is in the middle of the chamber the range would be the greateft, becaufe if a tube filled with powder was lightred in the middle, the powder would be burnt in half the time it would if lighted at one end, and it was fuppofed the greater quantity burnt before the fhot was fenfibly moved from its place, the greater force it would receive; but notwithftanding this plaufible reafon, experiments have evinced the contrary.
The next obfervation to be made is, that the concave chamber is preferable to the cylindric, and this to any other; which has not hitherto been confidered: the Spaniards mazke theirs fpheric, the Frencb in the fhape of a pear; and we conicál. The various opinions authors and artillerifts have concerning the figure of chambers are very extraordinary. The chevalier Belidor efteems the conical the beft; but his reafoning concerning the properties

LNTRODUETHON

perties of, different chambers in page xxiv. of bis Boinbardier Francois, are fo very weak and inconfiftents that it is needlefs to anfwer them a how 'fo great a man as he is in all other refpects could defcend to fuch volgar errors is inconceiyable.

Mr. Robins, in page 4t, old edit. pretends, that the figure of a chamber has no, effect upon the action of powder, without fhewing the leaft reafon for his affer. tion. Count Bukebuig will have a parabolic form, ima. gining, that if the fire was introduced to the focus, the rays of lighted powder would, by the nature of the figure, reflect into parallel direction in the fame manner as the rays of light; fuppofing this was true, the fhell would not receive a greater force by it, becanfe a fluid acts always in a perpendicular direetion to the furface it ftrikes; thus in a globe the directions of the fluid rend all to the center, as we fhall prove in the fifth theorem; and when all the forces are reduced to the direction of the fhell, it is that force reunited into one direction that produces the real effect, and not the partial ones. This not only refutes what his lordfhip faid, but likewife Belidor and Robins, as having all fplit upon the fame rock. It is not the inward figure of the chamber, but its entrance, which produces the effect; becaufe the fmaller it is, the nearer it reduces the effect into the direction of the fhell. This is likewife proved by the practice of making fky-rockets, which being choaked at the end, by which it confines the force of explofion into a narrow fream, and increafes its violence fo as to make the rockets rife fo high as they do ; whereas if the opening was not confined, they would fcarcely rife at all. The notion that a concave chamber with a narrow neck fhakes the mortar violently without increafing the force of explofion, or the range, is fo inconfiltent with the laws of motion, that it merits not the leaft attention.

It is the general opinion of the artillery officers, that a mortar or gun carries farther when it is warm by much firing than when cold, or in the heat of the day than in

INTRODUCTION. ... $\mathbf{x x i}_{i}$

the morning. The conftant prattice by fea and land is, that when the guns are much heated to diminifh their charges, from the notion that they carry them much farther; which is a miftake. For when guns are much heated, they are diable to be fpoiled; and it is prudent to leffen their charges in that cafe. For it appears from my firft four experiments made in the cool of the morning, that the ranges were greater than thofe when the weather grew warm. The cbevalier Belidor made feveral experiments for that purpofe, which I have feen, and which are mentioned in general only in his Bombardier, page xxxviii; but the particulars are as follows: feveral mortars were fired in the cool of the morning; the fame trials were repeated in the middle of the day when it was very hot,' and the ranges in the' morning were always greater thatn thofe in the heat of the day : but as this was not fufficiently fatisfactory, the: chamber of a mortar was heated with lighted charcoals, as hot as could be without endangering the powder from taking fire; the range in this ftate of heat was much fhorter than when the mortar was quite cold. It is true: that heat will dry the powder, and gives it a greater force, if it remains a certain time in the chamber, which is not the cafe in brifk firing; and dried powder is better than when it is damp; yet the elafticity of the air is much increafed by cold, and relaxed by heat; I mean from the ftate of the atmofphere.
Having faid every thing neceffary in refpect to the length of guns, we are now to confider their thicknefs or ftrength of their feveral parts, which fhould be proportional to the efforts of fired powder ; but its abfolute force cannot be determined otherwife than by experiments. The weight of the guns depends on the charge of powder, and on their length; and though the charge has been leffened from that given formerly, yet the thicknefs of metal remains in general the fame; nor have the experiments with light guns mentioned before,

xxii INTRODUCTION.

 prevailed as yet in diminifhing the weights of larger calibers.I had two brafs 12 pounders caft for admiral Keppel, according to the conftruction in page 54 ; they weighed $1_{3}: 1: 0$, which flood the full ordnance proof; the old weigh $29: 1: 0$.
Thad alfo feveral eighteen brafs pounders calt for the India Company; fome of them were lately proved at Weolwich with fifreen pounds of powder, though the charge in fervice fhould not exceed fix pounds : they weigh 2400 , and are 9 feet long: a 24 pounder would in the fame proportion weigh 3200, and their length 9 feet 8 inches. I look upon this proportion to be fufficiently ftrong for brafs battering pieces, though much lighter than the prefent; even a 3^{2} pounder of that length would weigh only 4200, and in my opinion make better battering pieces; becaufe the largeft fhot makes a breach fooner than a fmaller, and the ancients made ufe of 48 pounders for that purpofe; but on account of their unweildinefs they were reduced to 24 pounders, not that they were better, but more manageable. That thefe guns are fufficiently ftrong appears not only from their proof, nor that they weigh twice as much as thofe of the light nature, but likewife from fome old 32 iron pounders caft in king Cbarles the fecond's time; fome of them remain ferviceable to this day, and they weighed 4200 only.

The firft caft guns were made of what is called gun metal, and this metal continued for a great while before caft iron was ufed; but in time, as artillery became more in ufe, the number of cannon became very great, and to leffen the expence iron guns were invented; but the opinion of their being liable to burft when much heated by firing, was the caufe of making them heavier than the brafs; and as fome did burft in effect, either through wrong management, or the unfkilfulnefs of fome founders, this notion has prevented the more general ufe that might be made of them to this day, But for what
reafon we make them much heavier now than in king Cbarles's time cannot be accounted fors for the prefent 3^{2} and 42 pounders weigh 54 and 55 or 56 hundreds: whereas they weighed formerly only 4200 and 5200 . This cannot heowing to better ore, or to more fkilful founders; becaufe: 1 have feen iron caft by the Carron company that could not be broke by any means, but would flatten and tear like brafs. 1 had two iron three pounders caft by that company for lord Egmont that weighed $3: 3: 0$ each, which ftood the full ordnance proof with three pounds of powder ; whereas their charge in fervice fhould never be more than one fourth, or at moft one third of that quantiry. I had fince two fix and two twelve pounders calt by the fame company for the Portuguefe fervice; the firt weighing 7:3:0, and the others $15: 2: 0$; and though they are not yet proved, I will anfwer for their ftrength. The old 6 pounders weigh $17: 1: 0$, and the 12 pounders $32: 2: 0$.

That iron pieces are preferable to brafs evidently appears from the experience we had in the laft war; for at Belleifle the brafs guns were foon rendered ufelefs, and iron thip guns were ufed to finifh the fiege. I have been affured by feveral artillery officers, that, in all the fieges we made in the laft war, they were obliged to ufe iron guns, becaufe the brafs did never ftand great firing, though they weigh 400 more than the iron.

This is eafily accounted for, becaufe gun metal is a compofition of copper and tin : the copper requires a red heat to melt, and tin only a common fire; fo that when the gun is heated by much firing, the tin melts, and the copper alone remains to fupport the force of explofion; by which the muzzle droops, and the vent widens fometimes to that degree, as a man's fift may go in it. To make the vent more durable they put in a piece of copper to grain it, as it is called. This grain is fixed into the mould before the melted metal is let in to make them unite together; but as copper is fofter than gun metal, inttead of making the vent more durable,

xxiv INTRODUCTION.

durable. as it is imagined, it rather weakens it in my opinion. If a fteel grain was put in, provided it can be united with the metal, there is no doubt but it would be better than any other metal; for it has been found by experience, that a new vent of iron being made, it was fcarcely ever fpoiled afterwards. The French had a gun with an iron vent at Belleifle, which was found after the fiege to be the only one that ftood out the fiege without being fpoiled. To make a compofition of gun metal of a durable fubftance, the ingredients fhould be: fuch as require the fame degree of heat to melt; but no fuch metals have as yet been difcovered. It is true, that fome Saxons pretend to have that fecret; but as they have not yet made any guns of it, no dependance can be made on it.

As good iron caft from virgin ore has all the quality that can be defired in gun metal, and not one burft all this war that I heard of, what occafion is there for any other? and there is fuch a plenty of it every where, efpecially in England, and the founders are fo expert in their bufinefs at prefent, that they can make it more or lefs malleable, as they pleafe; befides, the expence is fo much lefs, as 9 or 10 to one; which one would think fhould be a fufficient motive to ufe no other. Although the artillery officers agree, that iron battering pieces are preferable to brafs, yet to make field pieces of iron they by no means approve of, becaufe they fay it would be too dangerous to ftand by them in time of action; but what fhould prevent a proper trial to be made? And if it does not fucceed, the expence would be inconfiderable; and if it does, as I do not doubt it will, what a prodigious expence would be faved.

I would advife to have two fix pounders caft of the fame weight as the brafs, and proved in the fame manner; then fire them three hundred rounds as quick as they can, with a pound and a quarter of powder, in the fame manner as the brafs were tried; and if they ftand fuch a trial, let the officers then judge whether there can

INTRODUCTION

be any danger in ufing them. We are not to judge rafhly in a matter of lo great importance as this, without a full and. fufficient proof. It is not the opinion of a few perfons we are to judge by, but by matter of fact. 1 may poffibly be miftaken, though I think to have fufficient proofs of what I affert; and therefore recommend proper trials to be abfolutely certain.
As we propofe chambers to be made in: all calibers from an 18 pounder upwards, it will not be improper to fhew here their advantage, firft from experiments, and afterwards from theory. General Williamjon and the reft of the artillery officers made likewite feveral experiments with fhells from a bomb veffel in the harbour of Mabon in 1746 . Of which 1 hall only infert the range of the fifth, which was 4570 yards ; the mortar was loaded with 35 to and 10 ounces, the fhell weighed two hundred or 224 pounds, and the angle of elevation 45 degrees; and the range of the feventeenth experiment with a ten inch mortar was 3787 yards ; the fhell weighed 97 lb . and the mortar loaded with 12 pounds of powder. Now the charge of the firft mortar being bout 5.6 parts of the weight of the fhell, produced a greater range than the 18 pounder gun loaded with half the weight of the fhot; the fecond mortar was loaded with no more than an eighth part of the fhell's weight, Ind yet its range differed but 373 yards from that of he gun. This great difference between the forces of powder, when it was confined in a chamber, and in a gun without a chamber, can arife from no other caufe, han that the direction of its force is nearer to that of he fhell than it is to that of the fhot. It is true, that he refiftance of the air is lefs on the fhell than on the hot; but, on the other hand, the bore of the mortar s fo Chort, and fo wide in comparifon to the width of he chamber, that the explofion of the powder can only ct upon the fhell before it is fenfibly moved from its lace; inftead of which it acts upon the fhot till it zaves the gun. All this being confidered, the advan-

$$
\mathbf{c} \quad, \quad \text { tage }
$$

We frall prove this likewife by theory hereafter in theorem the vth.

Though we have fhewn that the theory of powder is as yet defective in many refpects for want of a fufficient number of good experiments, thofe which have hitherto been made were with too fmall quantities, as can by no means be depended upon: fince the fmalleft error in a few grains becomes very confiderable in the charges of artillery pieces; neither do we know the time of the degrees of inflammation. All that can be done, is to fuppofe that it fires all at the firft inftant, and proceed upon this fuppofition, though erroneous, till fuch time that the law of inflammation has been difcovered.

Theory of Powder.

$$
\text { Theorem } 1 \text {. }
$$

The explofion of fired powder produces a permanent elafic fluid, and forms a sphere, if not prevented by any exter. nal obftacle.

AUTHORS agree, and experience fhews, tha fired powder produces an elattic fluid; and if if be fired under an exhaufted receiver, the mercurial gage defcends; and though it rifes again when the heat is abated, yet it remains always below its common fap. dard; which plainly fhews, that the fluid produced by fired powder is elaftic and permanent.

Again, if a fmall quantity of powder be fired on: table, its flame rifes in the form of a femi-fphere; and in whatever veffel powder is confined, the explofion will always burft it in the weakeft part, if the elaftic forct

INTRODUCTION δ xxvii

be fufficient. Confequently fired powder acts on every fide alike; which could not happen, unlefs the explofion was fpherical.

REMARK.

Though authors agree, that powder produces an elaftic fluid when fired, yet they differ in the manner of it. Moft of them are of opinion, that powder is orily condenfed air, which being heated by the explofion, as well as the natural air contained between the interfices of the grains, produced this elaftic fltid. Others affirm, that the air contained in powder exifts in its natural ftate; which being heated expands itfelf, and produces the explofion. But this is contradieted by the above cited experiment : for when the heat in the receiver is abated, the mercurial gage fhould, aecording to this fuppofition, rife again to the fame height as it was before; which is contrary to experience.

Sir IJaac Newton fays, in his Optics, Query 10, that if falt of tartar be mixed with powder, and that mixture be heated till it takes fire, the explofion will be more violent and quick than that of powder alone; which can proceed from no other caufe, than the action of the vapour of the powder upon the falt of tartat, whereby that falt is rarefied ; and therefore the explofion of powder arifes from the violent action, whereby all the mixture being quickly and vehemently heated, is rarefied and converted into fume and vapour ; which vapour, by the violence of that action becoming fo hot as to thine, appears in the form of flame. Thus far Sir IJaac Neitoton.

But whether the elaftic force of powder be owing to the expanfion of air, or to fome other fluid produced by the ingredients of which it is made, is not material in refpect to what follows; it being fufficient for our purpofe, that the force produced thereby atts chiefly according to the fame law as all other elaftic fluids; which it will be proved to do by experiments hereafter.

INTRODUCTION.

> THEOREM II.

The denfities of the fame quantity of an elaftic fluid, contained in different capacities, are as tbefe capacities in. verfely.

For the fame quantity of matter being reduced to half the bulk, will have its parts twice nearer each other; if it be reduced to one third or one fourth of the bulk, the parts will be three or four times clofer to each other; and whatever the bulk is reduced to, the parts will always be clofer to each other in the fame proportion. And fince the denfity of matter confifts in the clofenefs. of the parts, it is evident that the denfity increafes as the bulks diminifh; confequently, the denfities of the fame quantity of an elaftic fluid; contained in different capacities, are as thefe capacities inverfely.

> Cor. I.

Hence it follows, that the denfities of different quantities of the fame elaftic fluid, contained in the fame or equal capacities, are as thefe quantities. For if twice the quantity be contained in the fame capacity, the denfity will be double; if shree or four times the quantity be contained in the fame capacity, the denfity will be triple or quadruple; and therefore, in general, whatever the ratio is between the quantities contained in the fame or equal capacities, that of the denfities will always be the fame.

> COR. II.

Hence the denfities of different quantities of the fame elaftic fluid, contained in different capacities, are as the quantities directly, and the capacities inverfely. For becaufe the denfities of the fame quantity of an elaftic fluid,

INTRODUCTION.

fluid, contained in different capacities, are as thefe capacities inverfely, by Theorem $\mathrm{II}_{\text {, }}$ and the denfities of different quantities of the fame fluid, contained in the fame or equal capacities, are as there quantities directly by Cor. F. it is evident, that if the quantities are different, as well as the capacities, the denfities will be as the quantities directly, and the capacities inverfely.

> THEOREM III.

The intenfity of beat produced by the explofion of fired powder, will be as the denfity of the fluid.
For the heats of the fame quantity of powder, fired in different capacities, will be as thefe capacities inverfely; and the heats of different quantities, fired in the fame or equal capacities, are as thefe quantities directly. Therefore the intenfity of heat produced by different quantities of fired powder in different capacities, is as the quantities directly, and the capacities inverfely; or as the denfities by the laft Corollary.

> Theorem IV.

The elaftic force produced by an explofion of fired powder, is in the compound ratio of the denfily of the fluid, and the intenfity of beat.

For the elaftic force of condenfed air is as the force of compreflion, and the force of compreffion is as the denfity; and fince the elaftic force is alfo increafed by heat, it is manifeft, that the elaftic force is in the compound ratio of the denfity of the fluid, and the intenfity of heat.

This may likewife be proved as follows: fince every particle of the fluid has the fame degree of heat, and the total force of the explofion is equal to the fum of the forces of all the parts; the elaftic force of the ex- one particle, and the fum of all the particles, or, which is the fame, the denfity of the fluid. Confequently the claftic force, produced by the explofion of fired powder, is in the compound ratio of the denfity of the fluid, and the intenfity of heat.

REMARK.

Mr. Robins fuppofes the elaftic force, produced by the explofion of fired powder, to be as the denfity of the fruid, which is the cafe of condenfed air void of heat; and therefore he fuppofes the increafe of force, produced by heat, to be conftant, in his propofition; but ginding afterwards that the force increafed by heat, he fays, we have hitherto fuppofed powder, when fired, to be equally hot with iran, at the beginning of its white heat; bus we have obferved, that it varies according to the quantity of powder fired together. The flame therefore may have all the different degrees, from that of a languid red reat, to the heat fufficient for the vitrification of metals ; which agrees exactly with what has been faid in the laft Theorem. That heat increafes greatly the elafticity of air, is known by heating an empty bottle, well corked, in boiling water; for it will either drive the cork out, or elfe burft the bottle. It is likewife well known, that the fteam of boiling water produces a great elaftic force, and perhaps mose than fived powder; although cold water feems to be entirely void of elafticity, fince it cannot be compreffed by any force we know of Hence it feems as if cold water was in its denfeft ftate; and it appears very probable, that the denfity of air has its limit, beyond which it never can be reduced.
COR. I.

Since the intenfity of heat is as the denfity of the Guid, by Theor. III, and the elaftic force of fired pow-
der is in the compound ratio of the denfity of the fluid, and the interfity of heat, the elaftic force of fired powder is therefore in a duplicate ratio of the denfity; and, confequently, by Cor. II. of Theor. II. the elaftic force of fired powder is in the duplicate ratio of the quantity of powder directly, and the duplicate ratio of the capacities inverfely.

Cor. II.

Hence, if the quantities of powder are in the fame ratio as the capacities in which they are contained, the forces of explofion will be equal.

For fince thele forces are in the duplicate ratios of the quantities of powder directly, and the duplicate ratio of the capacities inverfely; the fingle ratios being equal by fuppofition, the duplicate will likewife be equal.

Cor. III.

By a known property of fluids in general, the preffure againft any furface is in the compound ratio of the imprefling force, and the furface prefled; and fince, of all equal folids, the fphere has the leaft fusface, it is evident, that of all capacities which contain the fame quantity of powder, the fpheric is the ftrongeft, or, which is the fame, is the leaft preffed.
Cor, IV.

Hence, the forces againft fpheric fhells, filled with quantities of powder proportional to their capacities, are to each other as the fquares of their radii, for the forces of explofion being equal by Cor. II. the forces againft thefe fhells will be as the furfaces preffed; and they being as the fquares of the radii, the forces impreffed will be in the fame ratio of the fquares of the radii. Confequently, if the thicknefs of fhells are pro-.

xxxii MNTRODUCTION.

 portional to their radii, they will be requally ftrong; fince their thicknefs will be to each other as the fquares of the radii, and confequently as the imprefing forces.
It is alfo manifeft, that the forces againft the concave part of the cylindric furfaces, filled with proportionable quantities of powder, are as thefe furfaces: for the forces of explofion are equal in this cafe, by Cor. II. and therefore the imprefing forces are as the furfaces preffed. Now becaufe cylindric furfaces are in the compound ratio of their radii and their axes $;$ if the axes are equal, the forces are as their radii; if the radii are equal, as their axes; and if they are fimilar, as the fquares of the radii or axes.

REMARK.

When pieces of artillery are loaded with charges proportional to the weights of their fhots, the axes of the charges are proportional to their radii; and as they are equally preffed by the elaftic force of powder, as far as the charge reaches, their outward furface fhould be fo far parallel to their inner one, and the thicknefs of the metal made proportional to the radii of their bafes ; or becaufe the diameters of the bores are proportional to the diameters of the fhots, and from thence to the mouth, the outward figure fhould be that defcribed by the rotation of a cubic hyperbola about one of its aflymtotes, which is placed in the axis of the bore: this appears from what has been faid in Cor. I. after Theor. IV, But becaufe of the action of the fhot againft the infide of the piece, the thicknefs of metal mult be fomewhat more towards the muzzle than what this figure makes it.

Before the foregoing Theory can be applied to any particular example, it is neceffary to find the ratio be-

INTRODUCTION:

tween the preffure of the atmofphere and the elaftic force of powder, which is very difficult, becaufe authors difagree very much in their experiments on that head.

For Mr. Robins fays, that the air contained in powder is but 244 times denferthan that we breathe; and that its elafticity cannot be increafed above five times by the heat of the explofion; and from thence he concludes, that the elaftic force of fired powder is about 1000 times greater than the preffure of the atmofphere. The late Mr . Hawkfoee affured $\mathrm{me}_{\text {, }}$ that he found, by feveral experiments, the flame of powder to occupy about 5000 times the fpace of the powder unfired. Mr. Belidor fays, that, by fome experiments he made, he found that fpace to be about 4000 times increafed, and that the fame thing had been found by Mr. Amonion. Mr. Bigot de Morogues fays, in page 65, that he found that fpace to be from 4 to 4500 times; and laftly, Daniel Bernoullie found it to be from 4 to 6 coo *.

It is certain that thefe experiments are attended with great difficulties, on account of the quicknefs with which the powder fires, and the flame difappears. Another difficulty arifes from the inequality of the preffure of the atmòfphere, as well as from the different ftrength of powder; and therefore it is impoffible to arrive at any tolerable degree of exactnefs, notwithftanding all the precautions that can poffibly be taken in making the experiments: fo all that can be expected will be to take fuch a number as agrees neareft with the experiments made on the velocities of thots, which is that of Mr. Belidor's, as being a mean between the greateft and leaft of thefe feveral experiments.

[^0]
Theorem \quad.

Tbe force of an elaftic fluid againft any part of a fpberic furface defcribed by tbe arc DM about the radius CD as an axis, perpendicular to the diameter AB, is to the abfo-

lute forse, as the folid defcribed by the fegment P M D C terminated by the fine PM of tbat arc, is to the cylinder of the fame bafe and altitude; and the force againft the femi-Spbere is to the total force, as the femi- p phere to the circumfcribed cylinder,

Draw the radius CM; then, by the nature of fluids, the furface is preffed in a direction perpendicular to every point; whence the abfolute force in the direction CM is to the force impreffed at the point M, in the direction $\mathbf{P M}$ as $C M$ is to $C P$; and as this happens in refpect to every point in the arc M D, the force impreffed on the arc MD, will be to the abfolute force as the area PMDC is to the rectangle made by CP and CD: confequently the force againft the furface defcribed by the arc $M \mathrm{D}$ about the axis CD , is to the abfolute force as the folid defcribed by the fegment PMDC in that rotation to the cylinder, defcribed by the rectangle PC and $C D$; and the force againft the femi-fphere is to the abfolute force, as the femi-fphere is to its circumicribed cylinder.

Mr. Robins and Mr. Morogues, have fuppofed, that the force againft the femi fphere was equal to that againft the circle AB of the bafe: but they did not confider, that the directions of the forces againft the different parts of the fphere were oblique to the direction $C D$, in which the fphere is fuppofed to move; and therefore the total force muft be lefs than the abfolute force.

This

INTRODUCTION.

This Theorem agrees exaetly with Sir IJaac Newoton's prop. 35 , book ii.

$$
\text { Cor. } 1 .
$$

Since the fphere is the two-thirds of its circumfcribed cylinder, it follows that the ball is acted upon by the two thirds of the abfolute force of the powder.

ExAMPLE I.

If we fuppofe $C P$ to be a third part of the radias C A, it will be found by geometry that the cylinder, whofe radius of the bafe is $C P$, and altitude $C D$, is to the folid defcribed by the fpace CPMD about the axis $C D ;$ or the total force of the powder is to that part which acts upon the furface defcribed by the arc MD, as 900 to 875 : and fince the femi-fphere is acted upon by the two thirds of the total force of the powder, and if the quantity be the fame in both caufes, the force of explofion upon the fphere will be to the part which acts upon the furface deferibed by $M \mathrm{M}$, as 600 to 875 3 which fhews that the force againft the furface is only 25 parts lefs than the ablolute force 900 : whereas the force againft the femi-fphere is but 600 , the two thirds of the abfolute force 900.

Example II.

If $C P$ be one half of the radius $C A$, then it will be found in the fame manner as before, that the circumfcribed cylinder is to the folid defcribed by the fpace CPMD; or the total force of the powder is to the part acting upon the furface defcribed by the arc MD, as 900 to 841 ; and the force acting upon the fphere acting upon this folid, as 600 to 841 .

xxxvi
 INTRODUCTION.

Cor. II.
Hence it is manifest that chambers, whole diameters are but one third of the diameter of the bore, are more advantageous than thole whole diameters are one half, as they are made at prefent in our mortars; and if they were fill lefs they would be better; which however may have its limits. This agrees exactly with feveral experiments made for that purpose: for Mr. Hawkjbee tried feveral times a little mortar, which had three shifting chambers of the fame capacity, and always found that the chambers which were narroweft carried the fell fartheft.

As the firf part of artillery was printed before the 18 brass pounders have been proved, and the general conifruction of there pieces appears to be properly adapted to brafs guns for the land fervice, I hall infert it here, in order to hew how much the metal might be diminished.

General conftrultion of brads cannon for the land fervice.

Let the length AB, fee Plate I, be 21 diameters of its foot, the thickness of the metal at the breech and vent 18.5 parts, and at the mouth 9 ; the reft of the conftruction may be the fame as that given in page 46.

INTRODUCTION. xxxvii

Weigbt and dimenfions of brafs guns for land fervice.

It muft be obferved, that we made the lengths of the 24,32 , and 42 pounders the fame, being fufficient for battering pieces, and reduces the weight of the two laft confiderably; that thefe pieces are fufficiently ftrong appears from the old iron 32 and 42 poun. ders caft in king Cbarles the fecond's time, which weighed no more. But it mult be remembered, that

Calib	Length.	Weight.
6	$6: 7$	$3: 0: 4$
9	$7: 0$	$12: 0: 6$
12	$7: 8$	$16: 0: 8$
18	$9: 0$	$24: 0: 12$
24	$9: 8$	$32: 0: 16$
32	$9: 8$	$42: 0: 20$
42	$9: 8$	$52: 0: 24$

We have inferted this table of the dimenfions of iron field pieces, in order to thew how they may be conftructed, in cafe it fhould be thought proper to make trial of their itrength. Their length is 14 diameters of the fhot, the thicknefs of metal at the breech and vent 18 parts, and 9 at the mouth ; the reft of the conftruction is the fame as that of the light brafs field pieces.

The proof of thefe pieces fhould be made with one half of the fhot's weight of powder,

xxxviii INTRODUCTION.

powder, and their charge in fervice one fourth, which is the fame as thofe of brafs.
If thefe pieces are caft from good virgin ore by a fkilful founder, fuch as the Carron company, and fome others, without mixing any pig iron, there cannot be the leaft doubt but they will be as ufful, and laft longer than the light brafs; becaufe their vents fcarcely ever fpoil, and the pieces never bend at the neck.

The reader may perhaps be glad to know the greateft velocities that fhot can have, and their greateft ranges, which often have been fought for by moft artilleritts, but they could never agree; for which reafon we fhall infert them in the following table.
The firt column contains the weight of the fhot, the fecond the number of feet moved over uniformly, in a fecond by the greateft velocity; and the third the greatelt random ranges which thefe fhots can poffibly have, let the charges be ever fo great.

This fhews that fmall calibers can never go fo far as greater, and contradicts the common practice of making fmalt calibers longer in proportion, in order to go farther.

A ten inch fhell may go to 53^{84} yards at an elevation of 45 degrees, and a

Shot.	Velocities.	Ranges.
3	6.5 .7	2326
6	691.3	2932
9	7390	3352
12	775.3	3688
18	826.5	4191
24	866.8	4610
32	912.9	5143
42	955.5	5602
48	976.4	5849

INTRQDUCTION: *xxix

The demonftration of thefe velocities and ranges is given in the appendix. Mr. Robins thinks to prove, ia his feventh problem, that the velocity of the foregoing leaden bullet is 1668 feet in a fecond, which is more than four times greater than that above; and what is more extraordinary, he pretends to have found the fame velocity by experiments. As he feems to build his theory upon Sir IJaac Newton's principles, had he read the 40 oth propofition, book ii. he muft have been convinced of his miftake; and from over-rating the velocities, the refiftance of bodies moving in the air is, according to his computation, above twenty-four times too great in a 24 pounder.

Height. Diftance.

Yds.	Yards	Miles.
1	3735	2.12
2	5278	3.00
3	6470	3.67
4	7470	4.24
5	8353	4.74
6	9150	5.20
7	9863	5.60
8	10566	6.00
9	11206	6.36
10	11800	6.70
11	12390	7.04
12	12940	7.35
13	13468	7.65
14	13977	7.94
15	14468	8.22
16	14942	8.49
17	15402	8.75
18	15850	9.00
19	16283	9.25
20	16706	9.49
21	17118	9.72
22	17521	9.95
23	17915	10.38
24	18300	10.40
25	18678	10.61

Heighto Diftance.

| Yds. | Yards | Miles. |
| :---: | :---: | :---: | :---: |
| 26 | 19048 | 10.82 |
| 27 | 19410 | 11.03 |
| 28 | 19767 | 11.23 |
| 29 | 20107 | 11.42 |
| 30 | 20460 | 11.62 |
| 31 | 20800 | 11.82 |
| 32 | 21133 | 12.00 |
| 33 | 21459 | 12.20 |
| 34 | 21780 | 12.38 |
| 35 | 22100 | 12.55 |
| 36 | 22413 | 12.73 |
| 37 | 22720 | 12.91 |
| 38 | 22895 | 12.97 |
| 39 | 23329 | 13.20 |
| 40 | 23631 | 13.40 |
| 41 | 23919 | 13.59 |
| 42 | 24209 | 13.75 |
| 43 | 24500 | 13.92 |
| 44 | 24780 | 14.08 |
| 45 | 25059 | 14.24 |
| 46 | 25336 | 14.40 |
| 47 | 25610 | 14.55 |
| 48 | 25880 | 14.70 |
| 49 | 26148 | 14.85 |
| 50 | 26414 | 1.5 .00 |

x]

As the diftanceia fhip may be feen at fea is efteemed ufeful, we have given them from one yard high to 50 , from the furface of the fea, and the refpective diftances in yards and miles: they are deduced from the roundnefs of the fea's furface, according to the prob. in art. 41t, of our treatife of mathematics: the mean diameter of the earth being 6548856 French toifes, according to our determination; which being reduced into Englifh yards, gives 7,1447018 for its logarithm; to which adding continually the logarithm of the height, gives the logarithm of the fquare of the diftances in yards; and the dittances in yards being divided by $\mathbf{1 7 6 0}$, the number of yards in a mile, gives the number of miles which thefe diftances contain.

The navigator may always know the height he is from the furface of the fea, when he obferves the hull of another fhip, at the water edge, then he has the diftance marked in the table againft the height from which he obferves; but if any part of the fhip he obferves is hid by the furface of the water, he mult give a guefs how high the part hid is ; then if he adds the diftance againft that height expreffed in yards, to that againit the height he fees, the fame will be the true diftance to the fhip.

Example. Suppofe he obferves a fhip from a height of 15 yards, and the part of the fhip hid is 5 yards; then the diftance 6470 againft 5 yards, added to the diftance 14468 againft 15 yards, gives 20938 yards or 12 miles nearly for the diftance required.

We have not confidered the refraction of the air, by which the fhip may be feen a little farther than what is marked in the table. But if the fhip is within the horizon, and the height of the part feen between the furface of the water and the horizontal line, then the diftance anfwering to this height, fubtracted from the firft, gives that between the two fhips.

ARTILLERY.

```
ARTILLER Y.
```


$\begin{array}{lllll}\mathbf{P} & \mathbf{A} & \mathbf{R} & \mathbf{T} & \text { I. }\end{array}$

WEIGHTS AND MEASURES.

TO proceed with order in the enfuing work; it is proper to mention the neceffary weights and meafures ufed in Artillery, for the better underftanding the ufe and conftruetion of the tables.
An inch is the leaft common meafure; 12 inches make a foot, 3 feet a yard, a pole is 16.5 feet, a furlong 40 yards, and a mile 1760 yards. Thefe meafures are alfo fub-divided into 10, 100, and 1000 parts.

Avoirdupois weight is ufed in Artillery, and in all heavy commodities; a drachm is the leaft weight, 16 of which make an ounce, 16 ounces a pound, 14 pounds a ftone, 112 pounds a hundred weight, 20 hundreds' a ton.

As Frencb weights and meafures are proper to be undertood in Artillery, we fhall give the proportion between ours and theirs. The gentlemen of the Royal Society in London, in conjunction with thofe of the Royal Academy of Sciences at Paris, are faid to have, with B

ARTILLERY.

great accuracy, compared our weigots and meafures with thofe of France; the refult of which is,

The Englifh foot to the French royal, as 107 to 114. The Englifh pound avoirdupois to the French pound marc, as 63 to 68 . Whence 100 French pounds make very near 108 ; and therefore their hundred-weight is to ours, as 108 to 112 ; that is, as 27 to 28 , according to this proportion.

The proportion of the French and Englifh foot is nearly exact; for I tried two French fectors, the one made by Te Maire feemed to be exactly divided, and t found that three French inches make 3.2 of ours; fo that the French foot is to ours as 32 to 30 , which is near 114 to 10%; Ince if 114 be multiplied by 15 , the product will be 1710 ; and 107 multiplied by 16, gives 1712 ; which exceeds the former by 2 only.

But the proportion of the French and our weights is by no means right, as will appear hereafter, when we give tables of fhots. It is hard to judge how fuch a miftake could happen, unlefs the weights they compared were not thofe ufed in the Artillery there and here.

Before we proceed any farther, it will be neceflary to premife fome geometrical propofitions, which ought to be known, in order to underftand feveral parts of this work.
I. The diameter of the circle is to its circumference, as 113 is to 355 nearly.
1I. The fquare of the diameter is to the area of the circle, as 452 to 355 .
III. The cube of the diameter is to the folid content of a fphere, as 678 to 355 .
IV. The cubes of the axes are to the folid contents of equialtitude cylinders, as 452 to 355 .
V. The folid content of a fphere is to the circumferibed cylinder, as 2 to 3 . Thefe propofitions are demonftrated in the Ninth Section of my Elements of Mathematics.

ARTILLERY.

The following table contains the weight of a cubic foot, expreffed in ounces, of the feveral fubftances fpecified, which I have for the moft part taken from Mr. Cotes's hydroftatic lectures. Thofe of gun metal have been computed from their mixrure, and the caft iron from the 9 pound ball, whofe diameter is four inches, exceedingly near, according to Sir fomas Moor.

Specific gravities of bodies.

For his father weighing feveral iron balls with a curious fcale, found one nearly round, whofe diameter was 6.63 inches, and weighed 4 I pounds; from thence the diameter of a 9 pound ball is found to be 3.9995 inches, which being fo very near 4 inches, by taking ic as fuch, no fenfible error can happen in computation.

Having the weight of a cubic foot of thefe bodies, that of any parts may be found by proportion; and on the contrary, the weight of any part of a body being given, its specific gravity, or the weight of a cubic foor, may be found. Thus a cubic foot, or 1728 cubic inches, of gun metal, weigh 8784 ounces, or 549 pounds : then dividing 1728 by 9 , we get 192 cubic inches; and dividing 549 by 9 , we get 61 pounds. Hence 192 cubic inches of gun metal weigh 61 pounds.

Again : 1728 cubic inches of caft iron, weighing 7425 ounces, or 464 pounds and an ounce, which we thall neglect; then 1728 divided by 16 , gives 108 , and 464 divided by 116 , gives 29 . Hence 108 cubic inches of B 2
caft

4

ARTILLERY.

caft iron weigh 29 pounds. Thefe two examples will be uffeful hereafter in finding the weight of guns.
A fhell, whofe diameter is $12 \frac{3}{4}$, weighs 192 pounds when loaded, as will be fhewn; and 355 is to 678 , as the content or weight 192, is to the content or weight of the cube 566.69 made by its diameter : but the cube 2072.67 of $12 \frac{3}{3}$, is to the cube 1728 of 12 , as the weight 366.69 is to the weight 4892 of a cubic foot, or the fpecific gravity of 货l.

Again: a cylinder of powder, whofe axis and diameter are each 3.42 inches, contains one pound, or 16 ounces, as will be thewn hereafter; and 355 is to 45 , as the weight 16 ounces of the cylinder is to the weight 20.372 ounces of the cube made by its axis: but the cube 40 of 3.42 is to the cube 1728 of 12 , as the weight 20.37^{2} is to the weight 880 ounces of a cubic foot, or the fpecific gravity of ordnance powder.

Example I.

To find the diameter of an iron ball, whofe weightis given, fuppofing that of a 9 pound is 4 inches. Say, the cube root, 2.08 , of 9 pounds is to 4 inches, as the cube root of the given weight is to the diameter fought; or if 4 be divided by 2.08 , the cube root of 9 , the quotient 1.923 will be the diameter of a one pound ball; which being continually multiplied by the cube root of the given weight, gives the diameter required.

This may be done in a fhorter manner by making ufe of logarithms; for if the logarithm . 2839793 of 1.923 be contantly added to the third part of the loga. rithm of the weight, the fum will be the logarithm of the diameter. Suppofe a ball to weigh 24 pounds, add the given logarithm. 2839793 , to the third part .4600704 of the logarithm $\mathbf{1 . 3 8 0 2 1 1 2}$ of 24 , the fum .7440494 will be the logarithm of the diameter of a ball weighing 24 pounds, which therefore is 5.5468 inches.

ARTILLERY.

If the weight be expreffed by a fraction, the rule is ftill the fame; for inftance, the diameter of a pound and a half ball, or of $\frac{3}{3}$, is found, by'adding the logarithm .2839793 , found above, to .0580971 , one third of the logarithm of $\frac{3}{2}$; the fum .3426564 , will be the logarithm of the diameter required, which therefore is 2.2013 inches.

The diameter of an ounce ball is found, by fubtracting . 4013733 , one third of the logarithm of 16 , from the logarithm .2839793, of one pound; as this logarithm is lefs than the other, an unit muft be added to it; then the difference 882606 , will be the logarithm of the ball's diameter, which weighs an ounce. This logarithm being continually added to the third part of the logarithm of the weight expreffed in ounces, and an unit being taken from the fum, the remainder will be the logarithm of the diameter : thus, let the ball weigh eight ounces, add .3010300 , the third part of the logarithm of 8 , to the logarithon .882606 of one ounce; the fum. 18363 , after having fübtracted μ nity, will be that of the diameter, which is 1.526 inches.

As the diameter of the bore, or the caliber of the piece, is made one twentieth part larger than that of the fhot, according to the prefent practice, we have computed the following.

ARTILLERY.

Diameters of the Joots and calibers of Englioh gunss
an nu the
fin
po
4
de
ca
of
3
ur
3
d
2

$$
A^{\prime} R T L L_{1} E_{R} Y_{0}
$$

The numbers in the firft horizontal line are units, and thofe in the firft vertical column the tens : the other numbers under the one, and oppafite to the pthers, are the refpective diameters of fhot and calibers. Thus to find the diameter of the fhot, and the caliber of a 24 pounder, look for the number 2 at the fide, and for 4 at top; then the number 5.547 under 4 , and oppofite to 2, will be the diameter of the Thot in inchies and decimals, and the number 5.824 , under the firt, the caliber of the 24 pounder. Again, to find the diameter of the thot, and the caliber of a 3^{6} pqunder; look for 3 at the fide, and 6 at the top, then the number 6.350 , under 6, and oppofite to 3 , will be the diameter of the fhot, and the number 6,666 under it, the caliber of the 36 pounder. In the fame manBer may be found the diameter of the thot and the caliber of any gun, under a 60 pounder : thofe above 48 are not ufed.

ARTILLERY.

Diameters of the foots and bores of French guns by

 inches and decimals of their meafure.

ARTILLERYA.

This table is conftructed upon the fuppofition that the diameter of a four pound ball is three French inches, according to their authors; and from thence, the difference between the logarithm of three inches, and one third of the logarithm of four pounds, gives the logarithm .2764347 of the diameter of a one pound ball, which being continuaily added to one third of the number of pounds of the ball, the fum will be the logarithm of the diameter of that ball in inches and decimals. The windage of the Frencb guns is but one twentyfeventh part of the ball's diameter; which, therefore, being added to the diameter, gives that of the caliber. Mr. Saint Remy gives a table of thefe diameters in page 136. vol. i. new edit. in inches and duodecimals, without mentioning how it was conftructed. In page 82, he fays, that Butterfield has computed it, and that it is very exact. Butterfield was an Englifh mathematical-inftrument-maker eftablifhed at Paris.

This table agrees nearly with that given by Saint Remy, p. 136, as appears from the following numbers, where lines and points are reduced into decimals of an inch.

The firft column contains the weights of the fhot, the fecond their diameters in inches and decimals according to Saint Remy, $39-6.417-6.409$ and in the third the fame diameters $\mid 41-6.518-6517$ according to our tables. Hence, $46-6.776-6.77 \mathrm{I}$ our diameters are greater as far as a thirty fix pound fhot, and lefs above it. Therefore the Frencb' table has not been conftructed from the rule that the weights of fhots are as the cubes of their diameters, unlefs fome errors have been committed in their computations.

The following table has been computed upon the fuppofition, that the French foot is to the Eng iifl as 114 is 10 107, as we have fhewn in page 2 ; and from thence, the logarithm of the diameter of a French pound is -3039558, expreffed in Englifh inches and decimals.

10 ARTILLERY.
 As to the reft of the diameters they are found in the fame manner as before.

Diameters of the אots and bores of French guns in Englifh incbes.

ARTILLERY.

This table ferves to compare the French calibers to ours; for example, the diameter 5.808 of 2.24 pound ball is fomething more than 5.769 , that of our 27 . That 6.393 , of their 32 , nearly equal to 6.408 , that of our 37. That 6.648 of their 36 , nearly equal to 6.684 of our 42.

The diameter of a Frencb 9 pound fhot is 4.188 inches of our meafure, and its cube 73.453 ; and as the diameter of our 9 pounder is 4 inches, and its cube 64 ; therefore the Frencb weight is to ours as 73.453 is to 64 , or as 70 to 61 nearly: which differs greatly from the ratio mentioned before. Therefore 100 French pounds make $114 \frac{3}{4}$ pounds, and not 108, as the former proportion gives.

The proof that this ratio is the neareft that can be given by two figures, we fhall fuppofe, with Sir fonas Moor, that the diameter of a 9 pound iron fhot is 3.9995 inches; then as 114 is to 107 , as 3.9995 is to 3.7593 Frencb inches, whofe cube is 52.899 , and 70 is to 6 t as 9 to 7.8428 pound French weight. Therefore the cube 52.899 is to the cube 27 of 3 , as the weight 7.8428 is to the weight 4.0004 pounds of the fhot, whofe diameter is 3 Frencb inches, which agrees nearly with the fuppofition of the French: but if the ratio 68 to 63 be fuppofed, a 9 pounder Englifh weighs 8,3382; then by proportion the weight of a fhot, whofe diameter is 3 French inches, will be 4.255^{8} pounds, or bove a quarter more than 4 pounds; which is certainly more than' it is poffible not to perceive.

ARTILLERY.

Iron grape foot from 1 to 39 ounces:

vic
wb
ma
.22
of
an
rec
po
pa
on
m
an
th
th
th
th

گ
C
th
ta
When d

Whence the diameter of any bullet is found, by dividing 1.6706 inches by the cube root of the number, which fhews how many of them make a pound; or this may be done in a fhorter manner. From the logarithm $.222875^{6}$ of 1.6706 fubtract continually the third part of the logarithm g the number of bullets in the pound, and the difference will be the logarithm of the diameter. required.

Thus the diameter of a bullet, whereof 12 weigh a pound, will be found by fubtracting $\cdot 35972 \geqslant 0$, a third part of the logarithm of 12, from the given logarithm .2228756 , or, when this logarithm is lefs than the former, an unit muft be added, fo as to have $\mathbf{1 . 2 2 2 8 7 5 6}$, and the difference .8631486 will be the logarithm of the diameter fought ; which is .7297 inches; obferving that the number found will always be a decimal, when the logarithm which is to be fubtracted is greater than that of one pound; becaufe the divifor is greater than the dividend in this cafe.

From the fpecific gravity of lead, the diameter of any bullet may be found from its given weight. For fince a cubic foot weighs 11325 ounces by our table, and 678 is to 355 as the cube 1728 of a foot, or 12 inches, is the content of the fphere, which therefore is 5929.7 ounces; and fince fpheres are as the cubes of their diameters, the weight 5929.7 is to 16 ounces, or one pound, as the cabe 1728 is to the cube of the diameter of a fphere which weighs a pound; which cube therefore is 4.66263 , and its root 1.6706 inches, the diameter fought.

Sir fonas Moor makes this diameter 1.69 inches: though he was very curious in his experiments, yet as the fpecific gravities have likewife been determined by Cotes and feveral eminent men, it would be a prefumption in me to determine which of the two diameters is the moft accurate; for which reafon we fhall give two tables, one of which of thefe fuppofitions, leaving the choice to the impartial reader.

14

ARTILLERY.

Diameters of leaden bullets from a to 39 in tbe pound, aci cording to tbe autibor.

			2	3.			6	7	8	
0	0	1. 671	1. 326	1.158	1.	- 977		873	. 835	
1	. 715	-75	. 730	. 711						
2	615	. 605	596	.587				57		
	-									

Diameters of leaden bullets from Ito 39 in the pound, as: cording to Sir Jonas Moor.

						51	6	7	8	
-	0	1.690	1.341	1.172	1.064	0.9880	0.930	0.88	45	0.812
1	0.784	0.760	0.738	0.719	0.701	- 685	0.671	0.6	45	33
2	0.623	.612	0.603	0.594	0.5860	0.578	0.570	0.56	556	$5{ }^{\circ}$
	0. 544									

The diameter of the mufket bores differ not above one fiftieth part from that of the bullet; for if the Chot but juft rolls into the barrel it is fufficient. The government allows 11 bullets in the pound, for the proof of muikets, and 44 in the pound, or 29 in two pounds, for fervice: 17 for the proof of carabins, and 20 for fervice; and 28 in the pound for the proof of piftols, and 34 for fervice.

As powder meafures are ufeful in artillery, being more handy than weights, faving time, and are neceffary in ricochet firing, we fhall infert here fome expe. riments I made upon that fubject in 1753 , at the royal academy of artillery.
I. A cylinder, whofe axis and diameter were two inches each, contained 3 ounces and 3 grains, or 5 x grains; and as fimilar cylinders are as the cubes of their axis; if we fay 51 grains are to 256 grains, or one pound, as the cube 8 of 2 inches is to the cube 40.15^{6} of the diameter of a like cylinder holding one pound.
II. A cylinder, whofe axis and diameter were 4 inclies each, held 25 ounces and 10.5 grains, or 410.5 grains; whence 410.5 grains are to 256 grains, as the cube 64 of 4 inches is to 39.912 , the cube of the axis of a cylinder holding one pound.
III. A cylinder, whole diameter and axis were 6 inches each, held 5 pounds 6 ounces and 6 grains, or 1382 grains. Heace $1382: 256:: 216: 40.01$ for the cube required.
IV. A two-inch cube held 4 ounces and 1 grain, or 65 grains; and as 45^{2} is to 355 , fo is the cube 8 of the axis to the content of the cylinder, which therefore is 51.05 . Hence $65: 256:: 8: 40: 117$, the cube of the axis.
V. A fix inch cube held 6 pounds 13 ounces and 13 grains, or 1757 grains ; fo then $452: 355:: 1757$: 1379.944, or 1380 , the content of the cylinder; and if $1380: 25^{6}:: 216: 40.0 \%$, this fourth term will be the cube of the axis required. Hence a medium of thefe five experiments gives 40,053 cubic inches, whofe cube root 3.42 will be the diameter of a cylinder holding a pound of powder.

From hence we may deduce the fpecific gravity of powder. which is no more than the content of a cubic foot expreffed in ounces. Now fince 355 is to 452 , as the content 16 ounces of the cylinder is to 20.372, the content of the cube of its axis, and the cube 40 of the axis is to the cube 1728 of 12 inches, or a foot, as 20.37^{2} ounces to 880 ounces contained in a cubic foot of powder.
Sir fonas Moor found by feveral experiments the diameter of a cylinder holding a pound of powder to be 3.165 inches.

Diameters and beigbts of cylindric pocvder meafures from t to 39 ounces, according to the autbor.

The logarithm of an ounce is .1326467 ; the other numbers are found, by adding one third of the logarithm of the number of ounces. Thus the number of 8 ounces is found by adding -3010300, one third of the logarithm of 8 to that of one ounce, which gives $.433676 y$ for the logarithm 'of the number fought; which therefore is 2.714 .

Diameters and beigbts of cylindric powder meafures from I to 39 pounds, according to the autbor.

16	-			3	4	. 5	6	7	8	9
-	\bigcirc	$3 \cdot 420$	4.309 4	5	$5 \cdot 429$	5.848	6.214	6.541	6824	7
1	7.368	7.6	7.830	8.041	8.2438	8.434	8.618	8.	8.963	
2	283	35				10.00	10.13	10	. 38	10,
3										

Diameters of cylindric powder meafures, wiben the diameter is to the axis as 2 to 3, according to the autbor.

引	0	1		3	4	, 5		7	8	9
-	\bigcirc	1.181	1.491	1.710	1.880	2.027	2.155	2.268	2.371	2.472
1	2.554	2.588	2.714	2.788	2.857	2.924	2.988	3.049	3.164	3.164
2	3.218	3.271	$3 \cdot 322$	3.371	3.420	3.466	3.513	3.557	3.600	43
$\|3\|$	3.	3.724	3.76	3	3.841	3.87813			6	4.021

16	-							7		9
\bigcirc	-	2.988	3.764	8	4.743	5.109	$5 \cdot 428$	5.714	5.961	6.215
1	6.436	4	6.840	7.024	7.201	7.368	7.529	7.	O	
2	8109	8.242	8.372	. 496	8.618	8.735	8.849	8.963	68	9.181

Thefe diameters are found, if thofe of the former tables be divided by 1.1447, the cube root of $\frac{3}{2}$.

As I look upon thefe experiments to have been made with great accuracy, this difference can proceed from no other caufe, than that the grain of the powder was fomething finer in his time than at prefent. The changing the fize of the grains, is attended with many inconveniences without the leaft advantage; for the powder meafures made at one time are either larger or lefs than what they fhould be at another, whereby. great miftakes are made in loading of pieces. Sometimes more, and other times lefs powder is ufed than intended; and to change them continually, is attended with expences,

18

 ARTILLERY.pences, and cannot always be done abroad, where they have no conveniency to do it : fuch miftakes were made at Minorca fome years ago, where the powder meafure held 35 pounds inftead of 30 ; and at the end of the feafon, the officer could not account for the fpending fo much more powder than he intended, till he found the miftake by examining the meafure.

When the grains are made as large as we do at prefent, it happens that fome of them are much fmatler than others, and the fmall take fite fooner than the reff, by which the force of fome is partly expended before the reft is fired, and confequently the total force is not fo great as it would be, if the grains were nearly of the fame fize.

It has been imagined by fome, that the large grained powder is ftronger than the fmall: but Captain Defo. guliers made fome experiments with grained and mealed powder; both which carried the fhot the fame diftance. It may be prefumed, that powder was not grained at its firf difcovery, but in courfe of time experience fhewed that it kept longer in grains than otherwife; for which reafon this cuftom is followed by all nations, and is undoubtedly the beft.

Diameters and beights of cylindric powder meafures, bolding from 1 ounce to 19, according to Sir Jonas Moor.

Thefe diameters are in inches and decimals.

ARTILLERY.

Diameters athd beigbts of gylindric powder meafures, bolding fromin to is pounds.

1 b	\bigcirc	1				5		7	8	9
0	0	3.165	3.988	4.565	5.024	5.412	5.7516	6.054	6.330	6.583

This laft table is conftructed in this manner ; multiply ontinually the cube 31.705 , of 3.165 , by the number xpreffing the weight of powder, and the product will e the cube of the diameter and axis of the cylinder pught. Or thus, add continually .5003737 , the logathm of 3.165 , to the third part of the logarithm of he number fhewing the weight, then the fum will be he logarithm of the diameter required.
Thus one third .2006866; of the logarithm of 4 , eing added to the logarithm .5003737 , gives . 7010603 , pr the logarithm of the diameter of a cylinder, holding pounds of powder, which is 6.024 inches.
The diameter of a cylinder, holding an ounce of owder, is found by fubtracting one third of $: 4013733$, e logarithm of 16 , from the logarithm $\cdot 500 \cdot 3737$, then e difference .0990004 , will be the logarithm of the ameter required; which being continually added to pe third of the logarithm of the given number of ances, gives the logarithm of the diameter fought.
As powder meafures are more convenient, when their is is longer than their diameters, we fhall give the

Diameters of cylindric powder meafures, woben the diamela is to the beigbt, as 2 to 3, according to Sir Jonas Moor.

Thefe two laft tables are conftructed, by multiply continually the diameter in the two former tables, the cube root .873 of ${ }_{3}^{2}$, then the product will give diameters of cylinders, holding the fame quantity powder, or elfe by adding--.0586971, the logarith of .873 , or the third part of that of $\frac{2}{3}$, to the logaritity .5003737 , found above; then the fum 04416766 , bein continually added to one third of the logarithm of number expreffing the weight, the fum will be the log rithm of the diameter fought.

For example, to find the meafure that fhall hold pounds: the logarithm of 28 is 1.4471580 , one thi of which being added to the given logarithm 441676 gives .9240626 , for the logarithm of the diametert quired, which therefore is 8.396 inches.

This rule is proved from the known property in ge metry, that equal folids have their bafes and altitud reciprocally proportional. Hence, if a expreffes diameter of the bafe or altitude, and x the diameter
the bafe of the cylinder required; then beciaufe the diameter x of the bafe is to its altitude as 2 to 3 by fuppofition, the altitude will be $\frac{3}{2} x$; and hence, $a^{3}=\frac{3}{2} x^{3}$, by the condition of the problem, or $\frac{2}{5} a^{3}=x^{3}$; the cube root of which is $a^{3} \sqrt{\frac{2}{3}}=x$.

In the fame manner may be found the diameter of a cylinder, which is to its altitude in any other given ratio, fuch as 1 to 2 , or as 3 to 5 .

As it is neceffary that an artillery officer fhould know how to compute the number of fhot contained in a fquare or oblong pile, finifhed or unfinifhed, we fhall give here a method for finding the number of thot more general than that in our Elements of Mathematics, page 98, deduced from a moft compendious principle.

Investigation of a general rule for finding the fums of Series's.
If z expreffes the number of terms of a feries, whofe lum can be expreffed by the product of factors that are n an arithmetical progreffion; to find the z or general erm of that feries.
N. B. The general term of a feries is fuch an expreffion compofed of a variable \boldsymbol{z} and conftant quantities, that when z is made equal to $0,1,2$, 3 , or $1,2,3,4$, it gives the firft, fecond, third, fourth term of that feries.
It is evident, that by diminifhing the value of z by he common difference n of the factors, the fum will be fiminifhed by the laft term, and the difference between hefe two fums will be the z or general term required.
Thus if $z \cdot z+n \cdot z+2 n \cdot z+3 n$, be the fum of ny feries, by writing $z-n$ for z, we get $z-n$. z. $+n . z+2 n$: which fubtracted from the firft, gives $n . z \cdot z+n \cdot z+2 n$, for the general term required.
$N . B$. The points between the factors fignify multiplication.

ARTILLERY.

General Rume.

From the fum of a feries, to find its gneral term multiply tbe fum by the number of faitors and the commor difference, and ftrike out the laft faltor.
N. B. Whether the fum is multiplied by a contan number, or the factors decreafe or increafe, the rule is the fame.

Thus the fum $a z$ gives a for a general term; $z . z+$ gives $2 z$; the fum $z, z-1 . z-2$ gives $3 z . z-1$ and $z \cdot z+n \cdot z+2 n \cdot z+3 n$, gives $4 n \cdot z \cdot z+$ $z+2 \%$

General Rule.

From the general term of a feries to find the fumo any number z of terms,

Increafe the fallors by one more facior, and divide by tio number of factors' thus increafed, and by the common diff ference.

Thus the general term a gives $a z$ for the fum, a gives $\frac{1}{2} a z . z+1 ; z . z+1$ gives $\frac{1}{3} z . z+1 . z+2$ and $z_{0} z-n \cdot z-2 n$, gives $\frac{1}{4 n} z \cdot z-n \cdot-z-2 n$ $z-3 n$.

Obferve, when the firft value of z is 0 , the facton muft be of a decreafing progreffion; but if it is ang number of an increafing progreffion, as examples wi. fhew.

> ExAMPLEI.

Let the feries be any arithmetical progrefion as $a+n, a+2 n, a+3 n, \xi^{c} c$, whofe general term $a+z n$, when the values of z are $0,1,2,3$, and the fum $a z+\frac{1}{2} n . z-z-1$. of z terms. If $1,2,3,4$ then $a=n=1$, and $\frac{1}{2} z, z+1$, the fum of z term If $5,7,9,11$, then $a=5, n=2$, and $5 . z+z . z-$ or $z . z+4$, the fum of z terms.

ExAMPL

ARTILLERY:

Eximple II.

Let the feries be the fquares of an arithmettical progreffion, as a $a,\left.\overline{a+n}\right|^{2}, \overline{a+2 \eta^{2}}{ }^{2}$, छेc. whofe general term is $a+\left.z n\right|^{2}$ or $a a+2 n z+n n z z$, and $0,1,2$, 3 , the values of z : hence the fum of the two firft terms is $a a z+n z . z-1$, and fince $z z=z+z: z-i$, whofe fum is $\frac{1}{2} z . z-1+\frac{1}{3} z . z-1 . z-2$, or $\frac{1}{6} z$. $z-1.22-1$, when reduced under the fame denomination,

Therefore $a a z+n z . z-1+\frac{1}{6} n n z . z-1.2 z-1$, is the Sum of z terms of that feries.

Thus if the fefies is the fquares of the fitural numbers $1,2,3,4$, then $a=n=1$, and $z+z . z-1+$ ${ }_{6}^{1} z . z-1,2 z-1$, or $\frac{1}{6} z z+1.2 z+1$, when reduced under the fame denomination.

If the feries is $1,9,25,49$, that is the fquares of the numbers $1,3,5,7,9$, then is $\bar{a}=1, n=2$, and $z+$ $2 z: z-1+\frac{2}{3} z z-1.2 z-1$, or $\frac{1}{3} z .2 z+1,2 z-1$, the fum when reduced. If $z=10$; then will 1330 be the fum of the 10 firft terms.

Example III.

If $a b, a+\mathbf{1} . b+\mathbf{1}, a+2 . b+2$, be the feries, which is that of the horizontal range of a rectangular pile of fhot, whofe general term is $a+z b+z$, of $a b+\overline{a+b} z \times z z$, and $0,1,2,3,4$, the values of z; the fum is therefore $a b z+\bar{a}+b . \frac{1}{2} z . z-1+\frac{1}{6} z . z-1.2 z-1$, by examp. II.

This feries may be reduced to $A \cdot 2 \vec{a}+z-1 \times 2 \overrightarrow{b+z-1}$ $+\frac{1}{3} z+1 . z-1 . x$ by $\frac{y_{4}}{4} z$. For $2 a+z-1$, multiplied by $2 b+z-1$, give's $4 a b+\sqrt{2 a+2 b} . z-1+z-1 . z-1$, and $z-1 . z-1$ added to ${ }_{3}^{1} z+1 . z-1$, and the whole divided by 4 gives the firlt fum.

General Rule for an incomplete pile:

T'o twice the length and breadtb of the upper Jurface, add the corner rowo less one.

To the produci of thefe two numbers add one third of the product, the corner row lefs one by the corner row more one, and multiply the fum by one fourtb of the corner row.

Thus, if the fides of the upper furface are 20 by 4 , and the corner row 6;

Then the fum of 40 and 5 , multiplied by the fum of 8 and 5, gives
One third of 7 multiplied by 5 , gives - $-11 \frac{2}{3}$
Then the fum $596 \frac{1}{3}$ of thefe two products, multiplied by 6 and divided by 4 , gives 895 for the number of fhot contained in that pile.
CASEI.

When the pile is complete then $b=r$, and the fum 'A, becomes $3 a+2 z \rightarrow 1 x$ by $\frac{1}{6} z . z+1$. Which gives this

General RULe for a complete pile.
To tbree times the upper row add twice the corner row lefs one.

Multiply the fum by the product of the corner row, by the corner row more one, and divide the product by 6.

If the upper row be 20 , and the corner one 12 ; then 3 times 20, added to 23, gives - - 83

Multiply 83 by 12 , this product by 13 , and divide by 6 , which gives 2158 for the number of fhot re:quired.

$$
\text { Case } 1 \text { I. }
$$

When both a and b become unity, the fum \mathbf{A} becomes : $z z . z+1.2 z+1$, which gives this

ARTILLERY.

General R U L E for a complete Square pile.
Multiply the corner row by that row more one, multiply tbis product by twice the corner row more one, and divide by 6 .

If the corner row be 50 , then $\frac{1}{6} 50.51 \cdot 101$, or 25.17 . 101, gives 42925 for the number of fhot required.
N. B. By dividing before the multiplication is performed, as we have done, and which is always poffible, the operation becomes fhorter.

> CASE III.

When $b=a+1$, the feries becomes $a a+1, a+1, a+2$, and if each of thefe terms be divided by 2 , it will be that of a triangular pile, and becaufe $b=a+1$, the fum A divided by 2 , gives $2 a+z-1+\overline{2 a+z+1}+\frac{1}{3} z+1 . z$ $-1 \times$ by $\frac{z}{\overline{8}}$.

General Rule for triangular incomplete piles.
To twice the fide of the upper row, add the corner row lefs one, and the corner row more one.
To the product of these two numbers, add one third of the product, the corner row lefs one by the corner row more one, and multiply the fum by one eigbth of the corner row.

If the fide of the upper row be 26 , and the corner 20 ; then twice 26 added to 19 , gives 71 ; tivice 26 added to 21 , gives - $\quad 73$
And 71 multiplied by 73, gives —— 5183
One third of 21 multiplied by $19 \quad 133$
The fum 5316 , multiplied by 20 , and divided by 8 , gives 13290 , for the number of fhot contained in the pile.

Case

Caselv.
When a is unity, the fum in the laft cafe become $\frac{7}{6} z . z+1 . z+2$, which gives this

General Rule for a complete triangular pile.

Multiply the bafe by the bafe one more, tbis produa tbe bafe more two, and divide by 6 .

If the bafe be 40 , then 40 by 41 , by 42 , and product divided by 6 , gives 11480 for the number thot contained in this pile.

Thefe are all the different rules that can be given on that fubject, and to fave the reader the trouble computation, we fhall infert here four farge tables con taining the number of fhot in $2 \mathbf{2} 12$ complete piles! firft column of thefe tables contains the number of corner rows, and the upper horizontal line the nuinl of the upper ranges. The number of fhot in a pile againft the number of the corner row, and under the of its upper ranger. The laft column contains the number of fhot in a triangular pile, oppofire to the numbe of its corner row in the firft column.

PAR TI.

Conftruction of Guns.

WH A T has been faid in the Introduction, regard to the proper length of pieces, and the properties of different chambers in mortars, will enab us to form fome general conftructions of pieces, ducted from experiments and theory, and thereforele liable to exceptions, than thofe hitherto given by other
h.
..... i. A. C.
.......D \qquad E.

Plate. 1
\square T

Fig: 3
T
C
Fig: 2

which feem to have no other foundation, than the particular fancy of the conttiver, and generally a bare imitation of others. Before we proceed any farther, it is neceffary to give the names of the feveral parts of which pieces are compofed, in order that what is faid may be clearly underitood.

Names of the feveral parts of a gun.

Plate I. Fig. I.

A B. The length of the gun.
A E. The firft reinforce.
E F. The fecond reinforce.
F B. The chace.
HB. The muzzle.
A h. The cafcable.
A C. The breech.
CD. The vent field.

FI. The chace girdle.
r. s. The bafe ring and ogee.
t.- The vent aftragal and fillets.
pq. The firft reinforce ring and ogee.
v w . The fecond reinforce ring and ogee.
x. The chace aftragal and fillet.
2. The muzzle aftragal and fillets.
n. The muzzle mouldings.
m . The fwelling of the muzzle.
A i. The breech mouldings.
The vacant cylinder, wherein the powder and ball are lodged, is called the Bore, and the entrance of the bore, the Mouth of the Gun. The cylindric parts T, by which the gun is fixed upon its carriage, are called Trunnions; and the handles on brafs pieces, are called Dolphins, from the fifh whofe form they reprefent. The diameter of the bore is called the Caliber of the Piece. Lattly, the difference between the diameters of the fhot and the bore, is called the Windage of the Gun.

ARTILLERY:

REMARKS.

The length of a gun is always reckoned from the hind part of the bafe ring, or beginning of the car. cable, to the extremity of the muzzle. The fecond ire inforce begins at the fame circle where the firtt ends; and the chace at the fame circle where the fecond rein. force ends.

The firt reinforce includes the bafe ring, ogee next to it, the vent field, vent aftragal, and firft reinforce ring; the fecond reinforce, the ogee next to the firt reinforce ring, and the fecond reinforce ring; and the chace, the ogee, next to the fecond reinforce ring, the chace girdle and aftragal, the muzzle and aftragal. The trunnions and dolphins are always placed on the fecond reinforce; the firft, fo as the breech part may weigh fomething more than the muzzle part, to prevent the piece from kicking up behind when it is fired; which it will always do fo long as the center line is placed below that of the piece, as has been the cuftom ever fince their invention. On the contrary, the dolphins are fo placed, that when the gun is fufpended thereby, the breech and muzzle parts may equally poife.

The artillerifts here differ in the names of feveral parts; not one of them can tell precifely how far the muzzle reaches, nor the cafcable; for fome call the, fwelling the muzzle, others the breech mouldings, the cafcable, and fay, that the button is a feparate part by itfelf, and not included in the cafcable.

As no one has hitherto attempted to write upon Artillery in Englifh, and to fix the names, it is no wonder that the practitioners differ, fince they have no guide to go by. The only thing we could do, was to fix the names of the parts in the moft convenient manier to their conftruction, and to prevent confufion. We have called the part from the beginning of the muzzle aftragal to the mouth, the Muzzle; becaufe that aftragal deriving its name from the muzzle, it feems therefore

ARTILLERY:

that the muzzle fhould reach fo far: As to the cafcable, it cannot properly be determined otherwife than we have done ; fince it is commonly faid, that a piece is of fuch a length, exclufive of the cafcable; it agrees likewife with what general Arm/trong fays in his Conftruction, as well as the diftinction made by the founders and practitioners.

Formerly pieces were diftinguifhed by the names of Sakers, Culverins, Cannon, and Demi-cannon; bur at prefent their names are taken from the weight of their: fhot; as for example, a 12 or 24 pounder, carries a ball of 12 or 24 pounds weight.

As moft conftructions of authors agree in general, and differ only in fome particulars, we fhall give that of general Armftrong's, formerly furveyor-general of the ordnance, which appears to me lefs deficient than any that have hitherto been given, which are

General R v le for brafs and iron guns.

The length of the gun being divided into 7 equal parts; the length of the firft reinforce A E, is twa of thefe parts; the fecond EF, one, and a diameter of the bore; fo that the chace F B is four of thefe parts, wanting a diameter of the bore.
The diftance from the hind part of the bafe ring, to the beginning of the bore, that is, the breech AC, is always equal to the thicknefs of the metal at the vent. The trunnions T , are always a caliber in length, and as much in diameter, clear of the fecond reinforce ring, and placed in fuch a manner, that a right line drawn through their centers touches the lower part of the bore, as in the fourth figure, where that line is marked a, b, and paffing through the third divifion; that is to be three fevenths from the hind part of the bafe ring. The length of the cafcable Ah , is always two calibers and a quarter.

Thefe divifions are in general made by all nations, only the trunnions are placed half a caliber mere backward by the Frencb*。

General dimenfions of brafs guns.

The caliber of the gun is divided inta 16. equal parts.

The thicknefs of metal at the bafe ring from, the bore, is

At the end of the firft reinforce ring, 14.5
At the fame place, for the beginning of the fe- : cond reinforce,

At the end of the fecond reinforce, - - 112.5
At the fame place for the beginning of the chace,

At the end of the chace or muzzie, the mould ings excluded,

Mouldings.
Breadth of the $\left\{\begin{array}{l}\text { bafe ring, } \\ \text { I. } 5 \text { inches. }\end{array}\right.$
Breadth of the $\left\{\begin{array}{l}\text { ogee, next to the bafe } \\ \text { ring, }\end{array}\right.$
From the ogee to the fore part of the aftragal, a caliber.

The fillets of the aftragal, are each - . 28
The aftragal, or half-round - - . 56
Total of the aftragal and fillets, 1.12
At the firft and fecond reinforce ring, the fillets are - - .25

Breadth of the firt and fecond reinforce rings - - 1.25

The ogees next to thefe rings, $\quad 1.5$
The fillets at the muzzle, - - 25

- This figure does not anfwer to the following conftructions, but it is fufficient to thew the reader how to proceed, according to the given dimenfions.

The muzzle ogee, in a 12 pounder and upwards, is 1.25 inches; but in a 9 pounder and under it is an inch only. The chace girdle and aftragal is gne caiber. The face from the mouth of the gun to the muzzle aftragal, in an 18 pounder and ypwards, is equal o a diameter of the fecond reinforce ring; but in a 12 pounder and under, it is equal to the diameter of the irft reinforce ring.
The rifing of the mouldings at the firft and fegond cinforces, is an eighth of an inch ; and the sifing of the bafe ring is determined by laying a ryler to the exremities of the firft and fecond reinforce mouldings. The fwelling of the metal at the muzzle is always equal to the diameter of the fecond reinforce ring.

Cascabled

From the hind part of the bafe ring, to the fore part of the fillet next to the bottom, $\frac{3}{3}$ of a caliber.
From the fore park of the fillet pext to the button, ot the centre of the button, one caliber.
From the hind part of the bafe ring, to the hind part of the fillet, between the two ogees, $\frac{\%}{0}$ of a caliber.
Diameter of the fillet next to the button, $1.5 \mathrm{ca-}$ liber.
Diameter of the neck, $\frac{3}{4}$ of a caliber.
Diameter of the button, fomething more than a caliber, it is fix inches in a 24 pqunder.
It muft be obferved, that the fhell at the vent is 3 inches broad, and reaches from the bafe ring, to within quarter of an inch of the vent aftragal, leaving that pace for the eafe of turning, and the vent is a fifth part of an inch.

- The reader muft obferve, that general Armitrong made two ogees, though there is but one marked here.

ARTILLERY:

General dimenfions for iron guns.

The caliber of the gun is here divided into 14 equiral parts.
The thicknefs of metal at the vent from the bore, is 16 parts.
At the end of the firft reinforce - 14.5
At the beginning of the fecond reinforce,
At the end of the fecond reinforce, - 12.5
At the beginning of the chiace, $\quad 17.5$
At the end of the chace or muzzle, - 8 .
As to the mouldings, and the reft of the dimenfiong they are much the fame as before, only the diameter of the vent is here one fourth of an inch, without any res. fon given for it.

The lengths of the guns, according to this gentlo man, were as follows; the 32 pounder brafs, 10 feet; the 24 and 18 pounders, 9.5 feet; the 12 pounder, 91 the fix, 8; the three, 7; and the 1.5 pounder, 6 fet.

The iron 32 pounder, 9.5 feet; the 24 and if pounders, 9 ; the 12, eight; the 9 , feven; the 6 fix and half; and the 3, four and half feet.

Some of thefe dimenfions have been altered fince for others, grounded upon no better reafon than the for mer.

The reader may eafily perceive the perplexity of thefe conftructions, arifing from the different fcales that and ufed without the leaft neceffity. That the greateft pary of the mouldings fhould have the fame dimenfions, from a 3 pounder to one of 32 , appears contrary to reafon and efpecially contrary to the rules of architecture from whence they have been taken. To make as mang mouldings in iron guns, which are rough and not turned as in brafs ones, is another blunder; but thefe are trifld in regard to the abfurdities in general committed in theff conftructions; which cannot better be difiovered, that by examining all the parts feparately, each in theil order.

ARTILLERY. - $\quad 33$
Lengtb of guns.
If the continual changing the length of pieces be confidered it will appear evident, that practice alone is infüfficient to determine that which is the beft; and if the experiments hitherto publifhed on that account are examined with fome attention, it will be found, that for want of proceeding from proper principles, the refult of them is erroneous and inconclufive.
For the greateft part of them were made to difcover fuch a length as thould carry the fhot fartheft, without mentioning what the charge fhould be; believing that he greater the velocity of the fhot is, the more its execution would be: but it has been found on the contrary by experience, that a velocity which is fufficient to carry the fhot juft through a wall, does more execution than one that is greater. Others, fuch as Mr. Dumetz, and he late general Armftrong, endeavoured to find the beft ength of a piece, when loaded with two thirds of the hot's weight; and to attain which, Mr. Dumeiz made fe of different calibers, which had all the fame length, iz. Io feet, and he found that the 24 pounder carried s thot fartheft.
Now, what can be conciuded from thefe experihents? Nothing more, as I conceive, than that io et is a better length for a 24 pounder, loaded with that harge, than for any fmaller caliber : but it does not deermine, that this length is fuch, as to carry the fhot rtheft of any other; for we are not certain, whether ne of 8 or 9 feet long would not be better than this, nce no trial has been made to fhew that it would not. efides, we are as much at a lofs as ever, to know what e the beft lengths for fmaller or greater calibers.
From the experiments made by general Armftrong, it as concluded, that 9.5 feet was the beft length for a 4 pounder, though that of 9 feet produced the greateft nge.

D

ARTILLERY.

As there pieces were all of the fame weight, it is plaiu that fome of them were too ftrong in proportion their length; and if they had been reduced to a prope fize, their ranges might probably have changed: bu Juppofe this is in reality the beft length for a 24 pounde we are neverthelefs in the dark with refpect to the other calibers. So that the moft that can be made of the experiments, is, that the length of the 24 pounder been determined ncarly, with regard to the charge mad ufe of.

But it has been found fince by experiments, that pounds of powder are fufficient for a 24 pounder, whe it is to make a breach; for the French ufed no morel the two laft wars in all their fieges. This being cafe, all former experiments are exploded, and cond quently others ought to be made, in order to determí the beft length for that charge.

But are we certain that this charge is the beft thate be ufed ? I think by no means; for we have foum that one fourth of the weight of the fhot is fufficient field-pieces, and even a lefs one. And we are notos tain, that the fame charge might not do in batterie pieces, or on board of thips; fo that new trials thou be made firft, to know the beft charge before the lengd of the pieces can be determined.

The making finall calibers longer in proportion th great ones, i, attended with many inconveniences and no advantage, fo far as I can judge, fince there is neceffity for their carrying as far as the heavy ood which I fuppofe was the reafon the artifts went upoj but this fuppofition is erroneous; becaufe there is by one certain length that is better than any other, greay or lefs, as we fhall fhew; and therefore they may well be too long as too fhort.

Another inconveniency attends this practice, whis is, that fome of thefe pieces weigh above twice mat than they ought to do, according to the mot her conftruction, whereby their carriage from place to pla

ARTILLERY.

become's more troublefome, and the expence at leaft one third more.
Laftly, when the lengths of pieces are not proportioned to the diameters of their fhot, the experiments made with one caliber will not be of any ufe to any other, nor the dimenfions ufed; and therefore as many experiments muft be made as there are different calibers, as well as fo many different conftructions, in order to make them equally good and ftrong; and I may add, that this practice is the principal reafon that fo little improvement has been made in the conftruction of pieces, and that fo much confufion is met with in them; whereas, if they are all the fame number of diameters long, one general conftruction will be fufficient for all thofe made of the fame metal; and when the dimenfions of any one piece have been determined by experiments, it will ferve for them all; the pieces will be fimilar, and their weights in the fame proportion to that of their fhot. Finally, the conftruction of all kind of pieces will be fo fhort and eafy, as that they may be comprehended in a few leaves, as will be feen bereafter.
Since then neither practice, nor any theory hitherto publifhed, no more than the experiments made in Engand or France, have as yet furnifhed us with any fatisfacory rule to proceed by, and yet Artillery cannot be mproved without it ; we fhall endeavour to fhew here, both from theory and fome unexceptionable experiments, hat there is a certain length of a gun better than any pther longer or fhorter, whereby it will carry its fhot he fartheft poffible. For general Williamfon of the Artillery made many experiments at Minorca, which are elated in the introduction; whereby it appears that an ighteen pounder which weighed 3900, and length 9 ket, carried farther than another eighteen pounder that reighed 5100 , and was 11 feet long, when equally loadd , and with the fame angle of elevation; it was found kewife, that nine pounds of powder was the beft charge, nd carried the fhot farther than any other. From D 2 whence be lefs has not yet been tried.

Now as 9 feet is 21 diameter of the fhot nearly, and it is very probable that all calibers, proportionably long and charged, will produce fimilar effects, we may dran this conclufion, tbat the lengtb of pieces wbich carry thim Shot fartheft does not exceed 21 diameter of its Joot; and that tbeir beft cbarges are equal to balf the weight of their Shot.

This will receive no fmall degree of certainty from what we have proved in the appendix to this work, page 122, where we have fhewn, that the greateft velocities which cannon thot of different calibers can have are always proportional to their diameters; and as theif lengths ought to be in proportion to their charges, and they are proportional to the diameters of their fhot, the length muft therefore likewife be proportional to the diameters of their fhot.

We have likewife proved in the fame page, that the greateft velocities of projected bodies have certain limind which they cannot exceed, let the force that acts upou them be what it will; which confirms that part of ixs experiments with refpect to the beft charge.

Now fince the greateft velocities of projected bodird are proportional to their diameters, the largeft calibe will therefore carry their fhot fartheft. Confequendry the queftion of finding the length of a piece, fo aso produce the greateft range, depends on its caliber, if length, and on its charge, which we have here deter mined.

As thefe experiments are the beft and only ones thy ever were made on Artillery, as far as I have feen know, and agree exactly with the theory we have give in the appendix, fo we may affirm this theory to beth beft and only one grounded upon true and unexceptiong principles, and that all others hitherto publifhed ad
without foundation; and therefore all the conclufions drawn from them erroneous.
Though it may be convenient on fome particular occafion to have guns which carry their hot as far as pofifle, yet in common practice this rule is not to be followed; for on board of fhips thefe long and heavy guns would not anfwer 'fo well as fhorter and lighter, becaufe fhort guns are eafier loaded, require lefs room for the recoil, and are more expeditious in action; and fince fhips come fo near together in action as they do at prefent, the long ranges are intirely ufelefs: befides, the charge of, half the weight of the fhot is too much, and ought never to be ufed, one third at moft is quite fufficient, and perhaps lefs, does more execution, and heat the guns lefs: all thefe advantages ought not to be neglected.
The length of battering pieces ought to be fuch, as to enter into the embrafures fo far, as thar the blaft of explofion does not deftroy them in a day's firing; in that cafe they may be repaired again at night, becaufe it is impoffible to prevent the effect of the blaft intirely : for which reafon all calibers, not exceeding a 24 pounder, may be 21 diameters long, but thofe above cannot be fo long without inconveniencies; but the charges fhould never exceed one third of the fhot's weight, becaufe it has been found by experience that this charge is fufficient, and perhaps lefs would be better.
It muft be obferved, that guns fhould never be loaded with more powder than' is juft fufficient to produce the defired effect, which a fkiltul commander can or may always difcover in practice; by which the guns will not be heated more than is neceflary, and they may be fired longer without receiving much damage.
What has been faid in refpect to battering pieces may be applied to garrifon ones; only the beft charges may be given them on particular occafions, as at the beginning of an attack to oblige the enemy to brgin his approaches as far as poffible, or in a place fituated near

$3^{8} \quad$ ARTILIERT:
 the fea, or a navigable river, to prevent hips from

 coming too near.The field pieces thould have the beft length and charges, in order to annoy the enemy at the greateft diftance, excepting the battalion guns, which fhould be fhort and light, that they may advance as well as retire as quick as the army. From whence follows this

General Rute.

That the length of guns ougbt-to be determined from thin particular ufes.

Tbickne/s of Metal.

It is an univerfal cuftom in Europe to make the gum with reinforces; that is, they are, as it were, made of three frultrums of cones joined together, fo as the leatt bafe of the former is always greater than the greateft of the fucceeding one, whereby the metal breaks off in wm places on a fudden, as the reader has feen in the conftruction of pieces given here before. But fince powder acts uniformly and not by ftarts, it is hard to judge from whence this ridiculous cuftom has arifen, which feemsu be as old as the invention of guns; and nothing but the ignorance of the effects of powder has been the caufe of its being handed down to our time. Our veno ration for old cuftoms is fo great, that whoever at tempts to make any change is looked upon with con tempt, let his reafons be ever fo plain and good; this I know too well by experience.

Yet 1 fhall freely communicate whatever I think 0 be an improvement and ufeful to the public; let the con. fequence be what it will, I fhall do my duty. Since then powder acts gradually and not by ftarts, there fhould be no breakings off in the metal; and we have fhewn in the remark after Theor. IV, that the piect fhould be cylindric, from the bafe ring to the end of
ARTILLERY.
he charge, and from thence, by the nature of the exlofion, a curve line bending inwards quite to the mouth f the piece: but as the conftruction of the curve is ot very eafy, and differs in the main but very little from right-line, by making the part between the end of he charge and the mouth conical, it will be fufficiently xact for practice.
When pieces were loaded with two thirds of their hots weight, the thicknefs of metal was then at the ent equal to the diameter of the fhot; but fince there no occafion to load pieces with more than half that eight, the thicknefs of metal ought to be lefs; for hich reafon the prefent light 6 pounders are only the wo thirds of the diameter of the fhot thick, and their ength 15 diameters : the fame thicknefs is given to the 4 pounders, and their length is but 12 diameters; and sthis thicknefs has been found fufficient by many trials, then the charge and length remain the fame, there is oreafon to make them ftronger.
The ftrength given to iron guns is certainly more han required, fuppofing the charge no more than one hird of the fhot's weight; this has been found true by ome, whofe thicknefs at the vent was equal to the liameter of the Shor, and half that thicknefs at the nouth.

$$
\mathrm{V}_{\mathrm{EN}} \mathrm{~T} \text {. }
$$

The common method of placing the vent is within bout a quarter of an inch from the bottom of the chamber or bore : yet it is imagined, that if the vent was to come but at the middle of the charge, the powder would be nflamed in lefs time than in any other cafe. But notvithftanding that this appears to vifible, and feems to be demonftrable, yet I have found the contrary, to the great furprize of the fpectators. I had two mortars, the chamber of one cylindric, the diameter of the bafe one inch, and the axis two; the chamber of the other

D 4
concave;

ARTILLERY.

concave; each of thefe chambers had two vents, one at the bottom, and the other in the middle, and contrived in fuch a manner, that one could be fcrewed up, whilt the other ferved to fire; and I found always the range of the fhell greater, when the lower vent was ufed, than when the powder was fired by the middle one. The fame thing was tried by colonel Defaguliers and me, with different cylindric chambers, fome of which were three or four times the diameter of the bafe in length.

This being fact, it remains now to know, whether the fame would do in mortars of a larger fize, or in guns; for I muft own, that after thefe trials, and fome others of a ftill more extraordinary nature, which have been mentioned in the introduction, I can fearcely be lieve any thing relating to the effect of gunpowder, bur what has been found true by a fufficient number of experiments,

The windage, or difference between the diameters of the fhot and the bore, is not the fame in England as abroad. Suppofe the diameter of a fhot divided into 20 equal parts, then the diameter of the bore is 21 of thefe parts; the French fuppofe the diameter of the fhow divided into 26 parts, and the diameter of the bore to be 27 ; what the proportion is in Holland and other parts of Germany I do not know; but it is evident, that the lefs windage there is, the truer the fhot will go; and having lefs room to bounce from one fide to another, the gun will not be fpoiled fo foon; for which reafon I fuppofe, in the following conftructions, the diameter of the fhot to be divided into 24 equal parts, and make the bore 25, which is a medium between the Engli/b and Frencb method. This we do not fo much in order to differ from others, as on account of the convenient feale it affords, to conftruct not only guns thereby, but allo their carriages, as will be feen hereafter.

The French make little chambers in their 16 and 24 pounders, of one third of a caliber long, and as much in diameter; by this means they fay the metal becomes thicker at the vent; and prevents its fpoiling fo foon. But as chambers are much more advantageous in other refpects, we fhall conftruct fome hereafter, fo as to have all the advantages that can be had.

Some are for making the bottoms of the bore conical, others fpherical; and laftly, fome quite flat; but I can find no reafon to prefer one way before another, excepting the conveniency there may be in adapting the cartridges in a more eafy manner to their form.

Trunnions.

The method of placing the trunnions fo that their axis touches the lower furface of the bore, as is practifed all over Europe, is fo abfurd, that it is amazing no author or artift has thought proper to change it; the only reafon I ever heard given for this practice, was, that by this means they were ftronger fixed to the gun, and of confequence would not break off fo foon as in any other place. As infignificant as this reafon is, it ferves however to defend that old eftablifhed cuftom.

But to fhew the abfurdity of it; fuppofe A B to reprefent the center line of the bore, and C D the diftance of the center line of the trunnions from that of the bore. Now becaufe when the piece is fired, the explofion acts againit the breech B , and makes the piece recoil, but being fixed to the carriage by the trunnions, endeavours to turn about the point D , whereby it preffes alfo upon the coins under the breech B, where they by their elafti-

ARTILLERY.

city repel it upwards, and its weight brings it down again. The piece therefore acquires a pendulous motion about the center D, which caufes the coins to fly off, changes its direction, and thakes the carriage with great violence, and often breaks it to pieces.

In long pieces this effect is not to fenfible as in fhort ones; and though carriages generally break in their centers, yet the caufe has never been attributed to the wrong fituation of the trunnions; not even after the many accidents of that kind which have happened lately: for a fhort and light 24 pounder was tried at Woolvich, to know whether they might not be as ufeful in action is the light 6 pounders; but every time it was fired, it broke its carriage to pieces. From thefe accidents, and its recoiling more than the heavy pieces, they were rejected as ufelefs, without thinking in the leaft that both inconveniencies might eafily be remedied.

The piece ftood upon a platform of ftone quite level, which is not, nor ever has been, practifed on any occafion whatever; for in the field they are placed upon the rough ground without any platform ; and as the recoil is never fo great in fuch a fituation, as upon a level ftone platform, this objection is to no purpofe: and that this is fact beyond difpute, appears from the trials made at the fame time with light 6 pounders, which recoiled likewife in an extraordinary manner, notwithftanding they are found in real fervice not to do fo.

In a fiege, when batteries are erected, the platforms are made of wooden planks, raifed behind, more or lefs, according as it is neceffary, to prevent the pieces from recoiling farther than is convenient to reload them. And fince this may be done at pleafure, without the leaft inconvenience, the rejecting them on that account is frivolous and abfurd.

To prevent thefe pieces from breaking their carriages is eafy, if we dare break through old cuftoms, by making the axis of the trunnions to pafs through the center line of the bore, as may be feen in our conftruc-
ions hereafter. The pretence of their breaking of from the piece is taken away; by making fhoulders to hem ; befides, this objection is only imaginary, fiace thas never been tried.
What we have faid upon this head is likewife conirmed by practice in howitzes, which, being fixed to heir carriages in the fame manner as guns, are properly hothing elie than thort guns with chambers ; for their runnions are placed in the manner we propofe, and, When fired, acquire no other motion than a backward one, without fhaking in the leaft the carriage, nor did their trunnions ever fuffer.

Moúldings.

As they are made by way of ornament only, they depend chielly on the maker's fancy; it mult however be obferved, that they fhould be plain and fimple, and fuch as are uled in architecture, from whence they have been borrowed; the metal thould be projected as little as can be, that the piece may lie clofe on the carriage: the mouldings of our mortars are oddly jumbled together, without any order or judgment ; and thofe of our iron guns are more numerous than is confiftent with reafon, for they have fillets on both fides the firt and fecond reinforce rings, which are not ufed in brafs pieces; and as thefe mouldings are not turned in irons, they appear ridiculous, and more fo in fwivel guns, which have as many as thofe of the largeft caliber.

Muzzer.

The fwelling of the metal at the muzzle feems to have been made merely to make the pieces look graceful, or perhaps to appear of a larger caliber to an enemy at a diftance than they really are. When they are too heavy, the piece is liable to bend at the neck whed heated with much firing, which makes it either break

ARTILLERY.

or bend, and fo become ufelefs. Some are of opinion, that the metal thould be as high at the muzzle as at the bafe ring, that the vifual ray over the metal may be parallel to the center line of the bore, which they imagine to be neceffary for laying or pointing the piece in a proper manner; but thofe who are for this practice are very little acquainted with real fervice: for as the fhot defcends in its flight by the force of gravity; the piece muit be laid higher than the object to be hit ; fo that when the metal is equally high before and behind, the object is hid intirely by the thicknefs of the metal; and confequently the piece can never be laid true; wherem if the height of the metal be lefs at the muzzle than at the breech, the elevation of the piece, when pointed at the object, will anfwer the defcent of the fhot at 3 certain diftance, and the ikill of the gunner will be fuf. ficient to make a proper allowance when the object ii either farther or nearer.

Cascable.

They are made of various figures; fometimes likes bunch of grapes, or as the heads of different kinds of animals : the French diftinguifh their calibers by the different forms of the cafcables; but as this is expenfive when they are well carved, and looks paltry when not well done, the manner of making them quite plain, with a button and a few breech mouldings, as we do here, feems in my opinion much neater, and is lefs expenfive. It is true, that the diitinguifhing the different calibers is very proper; but this may be done in another manner, more agreeable to the fight, and cheaper:

Line of DireEtion.

Formerly pieces were made with a cavity upon the bafe ring, and a button upon the higheft part of the muzzle, whereby they were directed in the fame manner

ARTILLERY.

as fowling-pieces are; but how this line came to be left off in latter times I cannot tell; for to find the center line of a piece every time it is to be fired with a plummet or an inftroment, as is the cuftom, is very tedious, uncertain, and unmafterly; for as it is impoffible to turn the outfide of a piece true to the bore, conlidering the bluntnefs of the tools and the heavinefs of the engine, the center line can never be found to any tolerable degree of exactnefs, by an inftrument applied on the outfide of a piece; and when the fhot does not hit the mark, the gunner is at a lofs to know, whether it is owing to his want of fkill, or to this line not being rightly marked; whereby it is impoffible he flould be able to form a right judgment how to direct the piece.
But when the line of direction is marked on the piece in the aforefaid manner, and the thot does not hit the mark, he knows how to rectify the miftake, becaufe the line remains always the fame, whether it be marked right or not, which I have feen many times. It is faid, that the platforms are never rightly level, and if one wheel of the carriage ftands higher than the other, the line of direction becomes ufelefs; but I can find no reafon for not laying the planks level when the platform is made, fince I always have feen a level ufed; and this may even be done fufficiently exact by the eye without a level, fince a fmall trifle, either on one fide or other, cannot caufe any great error in the laying of the piece; and in a field engagement, where no batteries are made, it is of no Gignification, whether the piece points a little to the right or left, provided it is not too high or too low.

Calibers.

The choice of calibers depends on two confiderations, viz. they fhould never be lefs than thofe of other nations; becaufe in an engagement by land or fea, the larger fhot have always the advantage; and their dia-

ARTILLERY.

meters fhould have a fenfible difference to dilitinguif their fhot with eafe; otherwife it may happen in an es gagement, when men are generally in fome confufe that the one will be taken for the. other, as has hem pened to my knowledge, whereby the piece become unferviceable, till the fhot ftieking in it, has been blon out again; which fometimes cannot be done withot rendering the piece unferviceable.
As the conftruction of pieces, as well as that of the carriages, ought to depend on the diameter of thic fhot, methinks they fhould be expreffed by whole noin bers as much as can be, or at Jeaft by fome eafy frac tions. Thus they fhould be expreffed by $3 ; 3.5 ; 4$ $4.5 ; 5 ; 5.536$ inches; which anfwer nearly to $4,6,9,13,18,24$ and 38 pounders. And as tit diameter of a 9 pound ball is 4 inches, and may fen in a manner as a ftandard to make the ref by, 1 u forry to fee that this caliber has been rejected latelyi brafs cannon.

This is what we thought neceffary to premife befor we enter upon the conftruction of pieces, to fatisfy th reader, that they are the refult of a well afferted theon, and of fuch reafons as ought to be well confidered b. forehand; but whether they will fatisfy artifts prejudicad in favour of the moft abfurd, old eftablifhed cuftoms, it what time will hew: the fubjeet is of fo great an im portance to the nation, that it deferves to be well exs mined before-hand, and proper experiments made bo fore any change is introduced; for which reafon 1 fubmit thefe my endeavours to ferve the public to the judgment of my fuperiors.

General Construction for brafs baltering pieces. Plate 1. Fig, I.
Let the length A B, of the piece, be 18 diameters of the fhot; divide that diameter in 24 equal parts for ${ }^{3}$

ARTILLERY.

fcale, whereby, all the reft of the dimenfions are determined. Make the diameter of the bore equal to 25 of thefe parts; from the hind part A of the bafe ring, to the fore part D of the vent aftragal fet off 40 parts; make the thicknefs of metal taken from the bore at A and D, equal to 18 parts, that is, three quarters of the fhot's diameter, and 9 parts, or half that thicknefs at the mouth; then the lines drawn through thefe points will determine the figure of the gun, which therefore is cylindric from A to D, and conical from thence to the mouth.
The center line of the trunnions croffes the center line of the bore at right angles, and at a diftance of three fevenths of the total length A B of the gun, from the hind part A of the breech ; their diameter is 18 parts, as well as their length, free from the projection of the fecond reinforce ring; the fecond reinforce EF , is always two thirds of the firf A E; the breech AC is 16 parts, the chace girdle FI, 14; the muzzle HB, the tenth part of the total length of the gun, which is here 43 parts, and the diameter of the fwelling, m, of the muzzle is 6 parts diftant from the mouth.
The breadth of the bafe ring and ogee next to it are each 6 parts; the firft and fecond reinforce rings, and the ogees next to them, 5, the aftragals and fillets 4; the cavetto at the mouth 2.5 , and the fillets one each.
The bafe ring projects the metal by two parts, the firt and fecond reinforce rings by one, or rather lefs; the fillets of the aftragals by one half, and the round part is defcribed from a center placed in the outline of the piece. There is a circular fhoulder about the trunnions, whofe diameter exceeds that of the trunnions by ${ }^{6}$ parts, and projects even with the fecond reinforce ring.

The diftance from the hind part A, of the bafe ring to the center C , of the button, is 27 parts, the tadiou of the button 9 , the breadth of the quarter round 2_{2} the ogee 5 , and the fillets one each. From the center C of the button, draw lines to the extremity of the bafe ting E, F, in which find the center O , fo as the are des. feribed meets the arc of the button in the line C F, and touches the fecond fillet : thefe arcs will determine the neck; the line $O_{p} p$, drawn througli the center O, pad? allel to CA, will determine the fecond fillet, and CP, the firt.
To defcribe the ogee, join the extremities n, q, of the fillets; through the point q, draw the line $r p$, paralled to $O \mathrm{n}$, produced; in thele two lines find the centen p_{p} fo as the arcs defcribed through the points $n q$, meet in the middle of the line n q : the arc which determines the quarter round, is defcribed from a center r , in p, q, produced fo as to meet the extremity F, of the bafe ring within one part. The fhell is 6 parts broad, and the diameter of the vent a fifth part of an inch.

Muzzee. Fig 3 .

Take the line BK, equal to twenty parts, and ered. the perpendicular I K, after having made LP, equal to 6 parts, the center I, is to be found fo as the arc defribed, through the point K, fhall meet the point $L_{\text {; }}$ and if through the point a, at 4 parts diftant from HB, the line ar, be drawn perpendicular to LP , the centef \mathbf{r}, is to be found fo as the arc defcribed through the point L, may meet the extremity of the fillet a. The cavetto is no more than a concave quarter found.

It has been found by experiments, that when pieces have chambers, they require a lefs charge than they would do otherwife; for which reafon I would make a chamber in all pieces of 24 pound ball and upwards, whofe diameter fhould be two thirds the diameter of the

ore,

ARTILLERY.

ore, and length equal to that diameter. Sueh as is rerefented in the firf figure: Although this chamber potains but one ninth part of the fhot's weight of owder, yet the effect it produces is nearly equal to that a fourth part; which is fufficient in large pieces.
Whatever faults there may be found with the parculars of this and the following conftructions, it canot, however, be denied but this, is the true method hereby artillery pieces fhould be made; for fince arfitecture has its certain rules whereby to conftruct the veral parts of a column from its diaméter, there is no afon why the parts of a piece fhould not be determined the fame manner:

To find the weight of metal.

The qquare of 43 , the diameter of the uzzle without mouldings, - 1849
The fquare of 61, the diameter at the vent The rectangle, or main plan of thefe diaeters, 43 and 6r, - - - 2623

The fum of thefe three products added, - $\quad 8193$
Which multiplied by one third of 392, the ngth D B,
107055^{2}
The fquare of the diameter 61 , multiplied 40, the length A D,
Four times the cube of 18 , for the trunnions, frable, and mould, - : 23328

The fum of thefe laft three products added, 1242720 The fquare of the bore 25 , multiplied by length 416, - 260000

The difference between thefe two laft fums, 982720 The fquare of the diameter is to the area the circle, as 452 to $355, \quad-\quad-\quad 771826$

ARTILLERY.

Thefe are cubic parts of the fhot's diameter, divide into 24 equal parts : and as a cubic foot of gun meet weighs 459 pounds, according to our tables, or ty cubic inches 61 pounds ; the laft fum redaced in th proportion gives 245215 .

- But the cube of 24 , the diameter of the Mota is the cube of 4 , the diameter of a 9 pound ball, 25,21 to unity, fo is 245215 to 1135 pounds, the weight a 9 pounder; and if this number be divided by 9 , fhall have 126 pounds of metal for every pound of fhot's weight. Confequently the weight of the fhot any gun, according to this conitruqtion, multiplied 126 , and the product divided by 112 , gives the weif of the gun.

Length and weigbt of battering pieces.

6	8:0	19:0:	12	6:7	$13: 2: 0$
9	9:0	25:0:0	18	7:6	20: 1:0
12	9:0	29:0: 0	24	$8: 4$	27 :0:0
18	9:6	48: 0: 0	32	9:2	36:0:0
24	9:6	1:0	36.	9:6	40: $5: 0$
32	10: 0	55:2:7	42	10: 0	47:1:0
42	9:6	61:2:10	48	10: 6	54:0:0

The lengths of pieces are in feet and inches; guns of the fame caliber are not always of the f length, nor of the fame weight; thefe given here thofe moft commonly ufed at prefent; but for what

W
oul
om
noft
fell
Ist
wer,
de
emi
anc
ren igh tead y lit ech 1110 tain, that nd th 0 chan ${ }^{8} 8 \mathrm{p}$ nder
ghts
the the ch is ed, b requer great fon the 3^{2} pounder is longer than the 42 is only kne to the maker.

Remarks on this confirutioni:

We have fhewn in the Introduction, that the guns ould be cylindric as far as the charge reaches, and om thence conical to the mouth; and therefore the poltruction is conformable to the theory : we have likefif fhewn, that the center line of the trunnions ought to Is through the center line of the bore; for when it is wer, as has hitherto been the cuftom, the carriages deftroyed in a fhort time; the diftance of the trunnions m the breech is the fame in both, and we found it ewife to be right by computation : the length of the and 42 pounders is agreeable to that comimonly en to battering pieees; and fince both thefe calibers igh lefs than the old 24 pouniders, they may be ufed tead thereof, as well as thie 48 pounder, which weighs y little more thatr fome 24 pounders, efpecially as a ech is much fooner made by large calíbers than by ell ones; ahd that they are ftrong enough we are tain, fince our prefent field-pieces; whofe ftrength is that of thefe in the proportion of 8 to 9 , have been nd by repeated experiments, to bear any firing atever; and they need not be loaded but with one rth of the fhot's weight, when they are made withchambers, fince the force of a 32 pounder, loaded 8 pounds of powder, is greater than that of a 24 nder loaded with 8 pounds, in the proportion of the ghts of their Shot; that is, in proportion of 4 to 3 ; the force of a higher caliber is ftill greater. is true that thefe new pieces would recoil more the old, if they were loaded with the fame charges, th is not the cafe ; befides, it may be eafily preed, by allowing a greater flope to the platform. fequently the pieces, accotding to this conftruction, greatly the advantage over the old ones.

52
 ARTILLERY.

Conffrution of iron battering and garrijon pieces.

Let the length A B be 21 diameters of the fhot, divide that diameter into 24 equal parts as before, make the diameter of the bore 25 ; from the hind part A of the bafe ring, to the fore part D of the vent aftraga, fet off 48 parts ; make the thicknefs of the metal, takem from the bore at A and D, equal to 25 parts, and 18 at the mouth B.
The center line of the trunnions croffes the center line of the bore at right angles, at the diftance of three fo venths of the total length of the gun, that is nine dir meters from the hind part A of the breech : their die meter is 24 parts, as well as their length, free from the progreffion of the fecond reinforce ring; the firft reit force 9 diameters and 3 parts; the fecond 5 diameten and 9 parts; the breech AC, 24 parts; the muzz H B, 50 ; the chace girdle FI, 16; the diameter the fwelling at the muzzle is 6 parts diftant from, tie mouth ; and the reft as before.

By the fame manner of computation as before, 1 fir two hundred weight of metal for every pound of it fhot's weight. Hence we have the following,

Iron battering and garrion pieces.

ARTILLERY.

Obferve, that the 32 pounder is but 19 diameters long; the thicknefs of metal at thie breech 24, and 11 at the muzzle. Experience has fufficiently fhewn in this laft war, that,iron guns ftand much better, in making a breech, than the brafs; for the latter have failed in all the fieges they were ufed.
I can affirm, that a hundred and a half of metal is fufficient for one pound of the Shot's weight, provided the guns are made of good virgin ore : and one fhould think it would be the intereft of the nation, to make ufe of the beft that is to be found in the country for that purpofe.
Befides, a fet of $6,7,12,18,24,32$ of brafs piëces, weigh 22700 weight, which, at 130l. per ton, coft $1475 l$. 10 s. and the fame fet of iron weighs 19400 , ton cofts $16 l$, and the whole fet 155%. $4 s$. So that 9 fets of iron coft no more than one of brafs.

Confruction of brafs pieces for foips.

As long guns are very inconvenient on board of Thips on account of the difficulty in loading them, we hall uppofe the length AB to be 15 diameters of the fhot, vhich diameter being divided into 24 equal parts, as beore, and the diameter of the bore being likewife 25 parts; the diftance AD is 40 parts; the breech AC 18 ; he thicknefs of the metal at A and D is 20, and 10 at he mouth B; the reft of the conftruction is the fame as pefore; only the diameter and length of the trunnions re 20 parts each.
By the fame manner of computing the weight of netal as before, we fhall have 124 pounds of metal for very pound of the fhot's weight; which gives the folowing table.

Remarks on tbis conftruciion.

In this conftruction we have not confidered ftrength fo much as the weight, on account of the r coil; for fhould that be too great it might be attend ed with great inconveniency, fuch as tearing the tackl But when thefe guns are loaded with one fourth of fhot's weight, if there are no chambers made, the wi coil will be but little greater, or perhaps no morether that of old guns loaded with half of the fhot's weight this being the cafe, there is not the leaft reafon to mald pieces fo heavy as at prefent, nor fo long: for if it confidered that fhips may carry 12, 18, 24, 36, 42, pounders of this new conftruction, inftead of $6,9,1$ 18,24 , and 32 pounders of the prefent, and at the fam time carry lefs burthen; it muft appear to every ration perfon, what advantage fuch a fhip muft have above
enemy's of the fame rate. To illuftrate this by an example, we Thall give here a litt of the guns, length and weight, which are on board the Royal George.

$$
\begin{aligned}
& \text { Total } 4366 \text { or } 218.3 \text { tons. }
\end{aligned}
$$

It muft be obferved, that inflead of 28 pieces of 42 pounders (formerly taken from the Frencb) which are at prefent on board, the fame number of ours are to be put in their place.
Hence it appears, notwithflanding, that there are 28 pieces of 32 pounders in the new lift, inifead of 28 welve pounders, and 16 eighteen pounders inftead of the fame number of fixes; yet the difference between the total weights is 50.5 tons, an object too confiderable fot to be obferved. Befides, the new guns being fhorter than the old, they may be fired much fatter.
That the ftrength of thefe guns is fufficient, appears from the trial of 2 twelve pounders made for admiral Keppel; they were loaded with 12 pounds of powder each

E 4
6^{6} ARTILLERY.
time, and ftood the proof, without receiving any da mage; and I may venture to fay, that they would ftand any number of firings with the common charge.

General conftruction for iron Bip guns.

Let the length of the piece be 15 diameters of the Shot; the diameter of the bore 25 parts of the fhot's diameter divided into 24 , as before; the diftance A D, 40 parts; the breech A C, 24 ; the thicknefs of metal at the vent 24 , and half that thicknefs at the mouth; the diameter and length of the trunnions 24 each, and the reft of the conftruction the fame as be fore.

By the fame way of computing as before, we fhad find 140 pounds of iron, or a hundred and a quarter, for every pound weight of the fhot: fuppofing the 108 cubic inches of catt iron weigh 29 pounds, accord. ing to pur table of fpecific gravities.

Iron bip guns.

Old pieces.

Calib.	Length.	Weight.
3	$\frac{4: 6}{7: 1: 7}$	
4	$6: 0$	$12: 2: 13$
6	$9: 0$	$17: 1: 14$
9	$7: 0$	$23: 2: 2$
12	$9: 0$	$32: 3: 3$
18	$9: 0$	$41: 1: 8$
24	$9: 0$	$48: 0: 0$
32	$9: 6$	$53: 3: 23$
42		
$10: 0$	$55: 1: 12$	

New pieces.

| Calib. | Length. | Weight. |
| :--- | :--- | :--- | :--- |
| 3 | $3: 6$ | $3: 3: 0$ |
| 6 | $4: 4$ | $7: 2: 0$ |
| 9 | $5: 0$ | $11: 3: 0$ |
| 12 | $5: 6$ | $15: 0: 0$ |
| 18 | $6: 4$ | $22: 2: 0$ |
| 24 | $7: 0$ | $30: 0: 0$ |
| 32 | $\frac{7: 6}{6}$ | $40: 0: 0$ |
| 42 | $8: 4$ | $52: 2: 0$ |
| 48 | $8: 6$ | $60: 0: 0$ |

ARTILLERY.

57

Remarks on tbis conftrution.

The making iron pieces in fuch a manner as not to be heavier than is neceffary, nor yet too weak, fo as to be in any langer to break when fired brifkly for fome time, is of the greateft importance, infomuch as all our fhips, one or two excepted, are provided therewith; for by making them too heavy the fhips cannot carry fo many large calibers as they otherwife might, which is agreed by the beft judges to be a great difadvantage; if, on the other hand, they fhould be fo wealk as not to bear a brifk firing, the burfting of a piece in an action might create fuch a confufion as to caufe the lofs of the fhip. But to prove beyond doubt that no danger can be apprehended from guns made according to this conftruction, provided the iron is good (fuch as that of the Carron company) appears from the trial of 2 three pounders made for lord Egmont; for they both ftood the ordnance proof loaded with three pounds of powder, and I am certain they would have ftood if they had been loaded with double that charge. There was alfo made 2 fix and 2 twelve pounders for Monf. De Malo, the Portuguefe envoy; and they ftood their proof, and would have done it, if they had been loaded with much greater charges than the weight of their fhot. Now fince all the calibers are proportionally ftrong, according to their charges, the one being found ftrong enough by practice, all the reft muft be fo too. Secondly, we have a great many 6 and 9 pounders that were caft formerly, and which have been ufed a great while, and are lefs thick at the muzzle aftragal than the new ones : this being an undeniable fact, proves again that the new are of a proper ftrength. The reafon that the prefent guns are fo much heavier than the new, is owing to their greater length; befides the charges of powder have hitherto been greater than was neceffary, and the ftrength of the pieces has, or ought to have been

58 ARTILLERY

been made in proportion. With regard to the length of there new pieces, they are fuch as are conceived by fome of the beft fea officers to be much more convenient than if they were longer, on account of the rope rammer they are obliged to ufe; for in long pieces, if the rope is hard and Itiff, it is bent with great difficulty, and if not, will fcarcely fuffice to ram the fhot home.

Guns of a new confiruction ufed in tbe feveral men of war.

$\begin{aligned} & \text { Num. } \\ & \text { of } \\ & \text { guns. } \end{aligned}$	Weight of old.	Weight new.		$\begin{gathered} \text { Weightof } \\ \text { old } \\ \text { number } \end{gathered}$	$\left\{\begin{array}{l} \text { Weight of } \\ \text { the new } \\ \text { number } \end{array}\right.$
100			5	21838.3	
9°	353	Oo	9	31839.3	18009
80	3108.	1827	7	21761.1	
74	309 t .	1840. 2	32	$989 \mathrm{Fz.0}$	58896
70	2997.	1796.2	10	$29970 \cdot 0$	17965
64	2543.	1305.0	23	58506. 1	30015
60	$2177 \cdot 3$	1185.0	30	65332.2	35550
50	1881.1	1035.0	19	35743.3	1966
44	1365.2	705.0		10924.0	5640
$4{ }^{\circ}$	1234.2	312.2	9	11110	2812
36	963.3	450.0	7	6746.1	3150
32	956. 2	435.0	28	26782.0	12180
28	593. 2	285.0	23	13650. 1	6555
24	531.3	255.0	12	6381.0	3060
20	42 !. 2	191. 1	15	6322.2	2869

Total of the Weights

- $445820: 241935$

Difference e Dife 30388500 or $10194 \frac{1}{4}$ tons. Difference of the expences - 1631081 .

If to this we add the difference $2 \sigma_{321}$. between tho brafs guns of the Royal George and the fame fet of iron, we get 18942 l l. for the difference between the expences of the old and new fet. And if the number of guns oo board of the floops and thofe in the garrifons, as well as thofe which ferve in the field, it may perhaps amount to as much more.

ARTILLERX.

Hence every fhip, may carry very nearly double calibers of thefe new guns to thofe of the old ones, and that with fafety, and be lefs burthened at the fame time, as has been fully proved: the great advantage of fuch a change mult be plain to all fuch as are concerned in naval affairs. I muft opferve one thing more, that the fmall charge we propofe may appear infufficient in ealibers under a 24 pounder; but when it is confidered, that when fhips come to a proper diftance, the fmall fhots have as mueh chance to penetrate the fhip as the large, though their effect is lels in proportion ; but at a great diftance the refiftance of the air is greater in proportion as the diameter diminifhes, as Mr. Robins has rightly obferyed.
But as all commanders make, or ought to make a point of it, to come clofe to an enemy before they begin to fire, there is no reafon to fear but that thefe fmall calibers are as ufeful as any others.

Number

ARTILLERT:

Number and caliber of guns on board the feveral men

The firft column contains the number of guns which the fhips carry, according to the prefent eftablifhment; the numbers in the firft horizontal line exprefs the calibers ufed on board of the men of war; and the number of each fort are under them oppofite the number the fhips carry.

Conftruction

ARTILLERY.

Conffruzion for ligbt field piectes.

Let the length A B of the piece be 14 diameters, the diameter of the fhot divided into 24 , and the bore 25 as before; the thicknefs A.C of the breech 14, the diftance AD 39; the thicknefs of metal at the vent AD 16, and 8 at the mouth; the diameter and length of the trunnions each 16 parts, and the reft of the confruction as in the firft.
A ring of metal is caft under the cafcable in thefe light pieces, as is feen in figure the fecond, which ferves to faften the head of a fcrew, that is ufed inftead of coins to raife the piece by: this ring is defribed from the fame center, and with the fame radius as the neck; the diameter of the hole to receive the bolt is 5 parts, and the thicknefs of the ring is 4 parts.

By the fame way of computing the weight of metal as after the firft conftruction, we find about 85 pounds of metal for every pound of the fhot's weight, which gives the following dimenfions.

FIELD PIECES.

Prefent.

Calib.	Length.	Weight.
3	$3: 6$	$2: 3: 10$
6	$4: 6$	$4: 3: 10$
12	$5: 0$	$8: 3: 8$
24	$5: 6$	$16: 3: 13$

New,

Calib.	Length.	Weight.
3	3: 3	2:1:2
6	4: 1	4:2: 5
9	4: 8	$6: 3: 8$
12	5:1	9:0:10
18	5:10	13:2:16
24	$6: 5$	18:1:5

From

A.RTILLERT.

From whence it appears, that the weights of the new conftructed pieces hearly agree with thofe ufed at prefent; the lengths of the 3 and 6 pounders new are lefs, and thofe of 12 and 24 fomething more than the lengths of the prefent. We have hitherto ufed but the fout calibers marked above, and even the 12 and 24 very litte, becaufe it has been found that thefe pieces; placed on a level platform, and loaded with one-fouthy of the Thot's weight of powder, recoil too much: yet as platforms are never made upon any occafion without a.flope, and in an engagement are placed upon turf, and the advantage of the ground is oy may be taken, the fiting thefe pieces upon a level platform made of ftone is net an experiment to be depended upon.
Thefe light 18 and 24 pounders may ferve is private expeditions for batrering piecesy, efpecially wherè the road-is very bad, and no heavy piecess can paffo, and yet battoring pieces are requireds which is the cafo whete a fort or any other poft is to be taken; for no lefs calibers are efteemed fufficient to make a breach, or induct the commander to furrender. There have been much lighter pieces made not many year ago, as a 6 pounder
weighing but three hundred and a half, and which carried its fhot very well with a pound and a quarter of powder ; but it is imagined that they are attended with inconveniencies in real ufe, for which reafori they have been rejected.

ConAruction of iron garrifon pieces.

Let the length of thefe pieces be is diameters of the fhot, and the reff of the conftruction be the fame as that of iron fhip guns: then by a like computation as before, we find $172 \frac{2}{3}$ pounds of iron for every pound of the fhot, and from thence we get the following dimenfions.

IRON

IRONGARRISON PIECES.

Calib.	Length.	Weight.
3	$4: 2$	$4: 2: 12$
6	$5: 3$	$9: 1: 0$
9	$6: 0$	$\frac{13: 3: 12}{}$
12	$6: 7$	$18: 2: 0$
18	$7: 6$	$27: 3: 0$
24	$8: 4$	$\frac{37: 0: 0}{8}$
32	$9: 2$	$\frac{49: 2: 18}{64: 0: 0}$
42	$10: 0$	

As the 32 pounder weighs about the fame, and is, nearly the fame length as the old 24 pounder, it may well ferve upon the fame occafion. As to the lengths and weights of the other calibers, I imagine them fuch as are proper for the ufes they are commonly applied to. The 42 pounder may alfo ferve near the fea, or in harbours, to prevent enemy's fhips from paffing by, with more advantage than 24 and 32 pounders, which are chiefly ufed at prefent upon thofe occafions.

But if fome of the fmaller calibers thould be thought too fhort, according to the prefent practice, they may be lengthened fo much as neceffary, without changing any of the other dimenfions, which do not depend on the length.

Having given general conftructions for the feveral forts of brafs and iron cannon, which are neceffary upon different occafions by land or fea, in the moft plain and
eafy manner we could think of (which none have yet done) and as thefe conftructions are grounded on the moft plaufible reafons, fupported by theory and prattice, it is hoped our endeavours will be of ufe to the public, as expences are confiderably leffened. For if the great quantity of metal required in all the guns neceffary to the nation, and the vaft number of horfes now ufed in the field be confidered, and that according to our conftruction above one-third will be faved, as likewife : proportional number of horfes, one would imagine thefe advantages fufficient to induce the directors of thefe affairs to examine well our fcheme, and to make proper trials, in order to be convinced whether what is here propofed is of any real advantage or not; at the fame time guarding againft the crafty infinuations of ignorant artifts, who find fault with improvements merely out of a felfinh vanity, without judgment or knowledge.

As we propofe to make chambers in all guns above an 18 pounder, it may be objected, that the difficulty of loading them will prevent their ufe; but as a rammer may be contrived fo, as to load thefe pieces as eafy as others, the only difference being to put the powder in cartridges, which is more than recompenfed by faving almoft half of it ; befides, the pieces will not be heated fo foon, and confequently they may be fired much oftener without any danger of being damaged. When all thefe advantages are well confidered, it will be found that chambers in large cannon is an improvement not to be neglected.

We muft obferve one thing more before we leave this fubject, which is, that as we make the diameter of the bore but one 24th part larger than that of the fhot (whereas the common practice is to make it one 20th part more) if the bores of the new conftructed guns are made as ufual, they will be fomething lighter than what we have marked them in the preceding tables. But as a fhot goes much truer when it juft fits the bore, and does leif damage to the gun, by not bouncing from one
fide in t
I wint the the

ARTILLERY.

 lide to the other, it is to be hoped that they will be made in the manner we propofe.It is true that fome attillery officers fay, that the windage of a gun fhould be equal to the thickntis of the ladle; becaufe when it has been loaded for a while, the fhot will not come out without being loofened thereby, in order to uaload it; and when this cannot be done, it muft be fired away, and fo loft; but as the windage of a 9 pounder, according to our conftruction, is a 166 of an inch, this is conceived a fufficient thicknefs for a ladle, and thofe of a higher caliber become ftill thicker in proportion. But fuppofe this thicknefs is not fufficient, the lofs of a fhot is a mere trifle in refpect to the ddvantage got thereby; befides, as there is always a wad before the fhot, I do not fee that any duft or dirt can get into the piece; and therefore when the muzzle is lowered, the fhot will roll out of courfe.
There is another advantage in thefe general conftrucfions, which is, that the diameters of the fhot's being marked on brafs rulers at full length, and divided into 4 equal parts, they will ferve as fcales to draw the draughts in full lengths for the ufe of the founders and he carriage-makers, whereby the patterns may be made pith great eafe and exactnefs.

P A R T III.

Confructions of Mortars and Howitzes:

MORTARS are a kind of fhort cannon of a large bore, with chambers. Their ufe is to throw ollow balls filled with powder, called hells; which dling upon any building, or into the works of a forfication, burft, and their fragments deftroy every thing ithin reach. Carcafles are alfo thrown out of thenp, bich are a fort of fhells with five holes, filled with
pitch and other combuftible matters, in ordes to - 8 buildings on fire; and fometimes bafkets full of flone the fize of a man's fift, are thrown from them upons enemy, placed in the covert way in the time of

Mortars are diftinguifhed here chiefly by the diamed of the bore. For example, a ten inch mortar is th the diameter of whofe bore is ten inches; there are ho ever fome fmall forts, as coehorns and royals ; thener of the firlt is derived from that of the inventor.

Sea mortars, or thofe placed on board of Mlips, longer and much heavier than the land. There is befid another fort, called howitzes, of a German inventic which differ from the former, in having their trunnio placed nearly in the middle, and being mounted up carriages like travelling gun-carriages.

Phate II. Fig. 5.

The principal parts of a mortar are on the outfidel chafe A, the reinforce B, the breech C, and the th nions D. In the infide, the part where the fhell lodged, is the bore; and the part where the powder lodged, called the chamber. The parts $n n$. The figure of the chamber is made varioully ferent nations; the Spaniards ufe chiefly the fpheric; French the conic, cylindric, and the bottled or concir the Englijh make them in the form of a fruftum of cone. Each nation has its realons, good or bad, prefer their make before that of others; but whot confiders thefe different forms in an impartial mane and the reafons given by authors for adhering to d preferable to others, will find, that nothing is lefs den mined upon true principles or experiments, than proportions of the feverai parts of a mortar ; we 4 therefore begin to give fome tables of their dimenfio and afterwards examine the different parts feparate as we have done in guns, in order that the reader $=$ diffinguif their perfections and imperfections.

N. B. The extremity of the bore is made round, and formed by an arc, whofe radius is equal to that of the bore, and terminated by the lines which torm the chamber: the bottom of the chamber is femicircular, the outfide of the nietal is determined by a circular arc, deferibed from the fame center as the bottom of the chamber, and touching the lines drawn parallel to its fides,
As all the neceffary dimesfions are fet down here securately, the reader may eafily conftrut thefe mortan by the help of the plate, which thews their form; for which reafon we thall infift no farther upon them.

Dimenfions of Sea mortars in incbes. Fig 6,7,
$\begin{array}{ll}\text { Diameter of the bore - }-13 & 10\end{array}$

| L.ength of the mortar $-\quad 63$ | 56 |
| :--- | :--- | :--- | From the muzzle to the reinforce 21 Length of the $\begin{cases}\text { reinforce } & 18 \\ \text { bore } & 24 \\ \text { chamber } & 21\end{cases}$

| Its greateft diameter | $-\quad 8.5$ | 6.6 |
| :--- | :--- | :--- | :--- |

Its leaft diameter - $\quad 7 \quad 6$
Breadth of the muzzle ring - 3
Of the muzzle, ogee, and fillet
From the muzzle to the altragal
Of the aftragals
Of the $\begin{aligned} & \text { reinforce rings } \\ & \begin{array}{l}\text { ogees next to them } \\ \text { chace ring } \\ \text { chace ogee } \\ \text { chamber aftragal }\end{array} \\ & \text { Thicknefs of metal at the muzzte }\end{aligned}$
$\begin{array}{ll}\text { Thickneis of metal at the muzzle } & 4.7 \\ \text { At the muzzle ring } & 5 \cdot 3 \\ \text { Near the reinforce } & 5 . \frac{3}{4} \\ \text { At the reinforce } & 8 \\ \text { Behind the reinforce - } & 9.5 \\ \text { Trunions length from end to end } & 45.4\end{array}$
ARTILLERY.

Irs greateft diameter $=-12$ Iss leait diamterter - - 10 Length of the part diminithed - 6

Chamber contains powder \#b $\mathbf{3 2}^{2}$
Weight of the mortar $=$ C. $8 \mathrm{I}: 1 ; 18 / 32: 3: 7$
N. B. The thicknefs of metal at the muzzle, and near the reinforce, is taken from the lines produced, which determine the bore of the mortar; and behind the reinforce it is taken from the lines, which terminate the chamber. The round payt or the breech of the mortar is circular, and defcribed from the fame center as the bottom of the chamber in the 10 inch, and fo as to come within 3.5 inches. of the end of the mortar in the 13 inch; and in both fo as to souch the outlines, which are drawn parallel to the fides of the chamber.
The reader may eafily perceive, that wherever ftands an O in the two laft tables, there is no luch dimenfion in that mortar; for there are mouldings in one which are not in the other.

Dimenfions of Howitzes by incbes. Fig. 8.

		8
From the muzzle to the reinforce	19.4	16
Length of the reinforce	15.9	10.7
Total length of the howitz	50.4	37.4
Length of the $\{$ bore	29.2	25.9
2ng of chaml	68	- 919
Its greateft diamerer	6.5	c) 4.6
lis leaft diameter	5.6	4
Breadth of the muzzle ring	1.7.0	1.25
From the muzzle ring to the aftraga	4.3	46
Breadth of the aftragal	13	-7
Of the ogee before the reinforce	2.	- 1.4
Of the ogee behind the reinforce	1.7	

ARTILLERY.

N. B. The extremity of the bore is made round, and formed by an arc, whofe radius is equal to that of the bore, and terminated by the lines which form the chamber: the bottom of the chamber is femicircular, the outfide of the metal is determined by a circular arc, defcribed from the fame center as the bottom of the chamber, and touching the lines drawn parallel to its fides.
As all the neceffary dimenfions are fet down here accurately, the reader may eafily conitruct thefe mortars by the help of the plate, which fhews their form; for which reaion we fhall infift no farther upon them.

Dimenfions of fea mortars in incbes. Fig, 6, 7.

Its greateft diameter - - 8.5 Its leaft diameter - - 7 Breadth of the muzzle ring - 3 Of the muzzle, ogee, and fillet 1.9 From the muzzle to the aftragal o Of the aftragals - 0 reinforce rings
ogees next to them - $\quad \begin{aligned} & 1.9 \\ & \text { 4.5 }\end{aligned}$ Of the $\left\{\begin{array}{l}\text { chace ring } \\ \text { chace ogee }\end{array} \quad-\quad 1.5\right.$ Chamber aftragal - 0 Thicknefs of metal at the muzzle 4.7 At the muzzle ring - - $5 \cdot \frac{3}{4}$ Near the reinforce - - 4.7 At the reinforce - - 8 Behind the reinforce - - 9.5 Trunions length from end to end 45.4

ARTILLERY.

N. B. The thicknefs of metal at the muzzle, and near the reinforce, is taken from the lines produced, which determine the bore of the mortar; and behind the reinforce it is taken from the lines, which terminate the chamber. The round part or the breech of the mortar is circular, and defreribed from the fame center as the bottom of the chamber in the 10 inch, and fo as to come within 3.5 inches of the end of the mortar in the 13 inch; and in both fo as to touch the outlines, which are drawn parallel to the fides of the chamber.
The reader may eafily perceive, that wherever ftands an o in the two laft tables, there is no fuch dimenfion in that mortar; for there are mouldings in one which are not in the other.

Dimenfions of Howitzes by incbes. Fig. 8.

Diameter of the bore - - 10
From the muzzle to the reinforce 19.4
length of the reinforce - 15.9
Total length of the howitz - 50.4
Length of the $\left\{\begin{array}{l}\text { bore } \\ \text { chamber }\end{array}\right.$ - $\begin{array}{r}29.2 \\ 168\end{array}$
Its greateft diamerer - - 6.5
Its leaft diameter - \quad. 6.
Breadth of the muzzle ring - $\quad 1.7$
From the muzzle ring to the aftragal 4.3
Breadth of the aftragal - I 3
Of the ogee before the reinforce
Of the ogee behind the reinforce

8
16
10.7
37.4
25.9

9:9
4.6

4
1.25

46
$\cdot 7$
1.4

Of
ARTILLERY.
70 $\begin{array}{llll}\text { Of the aftragal } \\ \text { Of the bafe ring }\end{array} \quad-\quad \begin{aligned} & 1.4 \\ & \text { From the bafe ring to the aftragal } \\ & \text { F }\end{aligned}$ $\begin{array}{lll}\text { Breadth of the aftragal } & 1.3\end{array}$ Thicknefs of metal at the muzzle 2.75 At the muzzle ring - - 5 Near the reinforce - - 3.4 At the reinforce - 5.0 Behind the reinforce - - 4.4 Diameter of the bafe ring - 20 Diameter at the vent aftragal - 17.5 Diameter of the $\left\{\begin{array}{l}\text { cafcable } \\ \text { button } \\ \text { neck }\end{array} \quad \begin{array}{l}8.25 \\ \end{array}\right.$
Breadth of the ogee and fillets I
Of the fecond ogee and fillets $\quad 1.6$
Diameter of the $\left\{\begin{array}{l}\text { firft fillet - } \\ \text { fecond }\end{array}\right.$ 11.13
Length and diameter of the trunion 6.
From the fore reinforce to the trunion 2.
Chamber contains powder 1618
Weight of the howitz - C. $3 \mathrm{I}: 2: 26$

amp
dimi
the f
and
Of all the parts of Artillery, the conftruction of mortars is the moft variable and uncertain; almoft every artillerift has fome favourite notion or other concerning their figure. Mr. Belidor mentions, in his Bombardier Frangois, four different chambers; namely, the cylindric, the fpheric, the conic, and the bottled; of thefe he fays the cylindric is the worft, and the conic the beft; for, fays he, the vent being at the end of the cylindric chamber, prevents the powder from taking fire fo quick as in the conical one; he alledges likewile another reafon againft the ufe of thefe chambers, which is, that they are feldom gaft fo as their axis correfponds with

ARTILLERY.

with that of the bore, whereby the direction of the fhell becomes variable and uncertain.
But fince there is no neceffity for placing the vent at the end of the chamber, as he fuppofes, all his arguments, on that account can only be againft the prefent practice, and by no means proves their badurels; and had he confidered the explofion of powder as an elaitic fluid, as he ought, he would have.eafily perceived that the direction of the chamber, with regard to that of the fhells, is of no confequence, fince the action of fired powder is every where perpendicular to the furface it acts upon. Befides, according to the experiments I made, which are mentioned in the preface, the force of powder, when fired at the end, is greater than when fired in the middle. I dare not however infer, that the fame thing will happen in larger mortars, becaufe I have found by experience, that we ought to depend upon nothing but what has been found to anfwer in pieces of the fame caliber; and therefore all the different fizes of mortars fhould be tried and examined, to determine where the vent is to be placed in the moft advantageous manner.
We have proved in the fifth Theorem, and the examples that follow, that the action of fired powder diminifhes in proportion as the furface preffed enlarges; the fame thing we have likewife found by experiments, and therefore the conic chambers are the very worft of all.
The late General Borgard made his chambers likewife conical, terminating in a circular form at the bottom, as has been thewn in the foregoing tables of the dimenfions; and fo as the fides of the chamber produced meet the extremities of the diameter at the mouth; imagining, I fuppofe, that the powder acts in right lines parallel to the fides of the chamber. Though he was one of the braveft officers of his time, and ferved about feventy years, yet his qualifications as an inventor were but very maderate.

As to the vulgar notion, that mortars with concave chambers, when fired, fhake their beds with great violence, and make the direction of the fhell very uncertain, it is grounded upon ignorance, and deferves no notice.

The length of mortars is no more afcertained than the reft of the dimenfions: the French make the length of the bore a diameter and an half of the fhell; on the contrary, we make that of our land mortars two of thefe diameters, and three in the ten inch fea mortar, which caufes a great difference in the weights; for our thirteen inch land mortars weigh C. $25: 0: 0$, whereas the French weigh only C. 13:0:0.

It is a query, whether this difference produces any material advantage in the ranges; if not, it would be unneceffary to make them fo long as we do, fince this increafe makes them fo much the heavier. For the fame thing (viz. that thofe guns which carry fartheft are not the beft) is alfo true in mortars; fince if they carry their fhells about 12 or 1500 yards with a moderate charge, it is in my opinion fufficient in refpect to land mortars; becaufe when they carry farther, the hitting an object becomes fo extremely uncertain, as to render that advantage ufelefs; therefore all means Thould be tried to make them as light as conveniently can be.

ARTILLERY.

The thicknefs of metal in the different parts of a mortar, is as undetermined as the reft; for not any two forts are equally ftrong; fome are as much too weak as others the reverfe, and thofe who have the direction of thefe things are fo llightly acquainted with the common principles of geometry, that when a mortar of any fize is made with proper dimenfions, and has been found in practice to anfwer perfectly well, they cannot make another either lefs or larger, that ghall ftill retain the properties of the former.
The reafon is, that commonly none but workmen are employed them, whofe knowledge confifts anly in imitation and guefs. For though a workman may be yery capable to execute the work, or to fee it done, yet it can hardly be fuppofed that he is able to determine the proper dimenfions of the feveral parts.
The parts of mortars are formed in imitation of thofe of guns; for which reafon they make them with a reinforce. This only averioads the mortar with a heap of ufelefs metal, and that in a place where the leaft ftrength is required; yet, as if this unneceflary metal was not fufficient, they add a grear projection at the mouth, which ferves to no other purpofe than to make the mortar top-heavy. The mouldings are likewife jumbled together, without any tafte or method, though they are taken from architecture.

As there has not the leaft hint hitherto been given, with regard to a general rule to conftruct all fizes of mortars by, without which, the artillerift cannot pofifibly underftand what he is about, nor can he judge whether he is right or wrong, whenever he attempts to conftruct others of a different fize from thofe in ufe at prefent, he muft remain in ignorance, let him take ever fo much pains, we fhall give the following rules.

General dimenfons for land mortars.

Plate III. Fig. 9.

From the end of the chamber to the
end of the mortar 16
Total length of the mortar - 92
From the mouth a to the reinforce $b 3^{\circ}$
Length of the reinforce $b c$ —— 18
Breadth of the \{muzzle ring and fillets 3.5
From the ogee to the muzzle aftragal 5

$$
\left\{\begin{array}{c}
\text { aftragal and fillets } \\
\text { ogee before the re- } \\
\text { inforce } \\
\text { two ogees and fillets } \\
\text { behind the rein } \\
\text { force }
\end{array}\right\} \begin{aligned}
& 2.5 \\
& 6
\end{aligned}
$$

Thicknefs of metal $\left\{\begin{array}{l}\text { at the muzzle } \\ \text { near the reinforce } \\ 6\end{array}\right.$ Thicknefs of metal at the $\begin{cases}\text { reinforce } & 7 \\ \text { chamber } & 12 \\ \text { muzzie ring } & 6.5\end{cases}$
Diameter of the trunions —— 14
Lengthof the trunions from the mortar 15
Chamber contains powder

-
-
$-\frac{5 d}{62 r}$

Weight of the mortar

30	30
10	10
45	40
21	20
15	14
8 F	74
26	22
14	14
3	3
2	2
4	3
2	2
2	2
5	4
4. 5	4
5	4.5
5. 5	5
12	12
5. 5	5
13	12
14	13
-	
442	466
$2 d$	$3 d$
3	5

N. B.

> ARTILLERY.
N. B. The chamber is cylindric, and the bottom a femi-fphere; the round part of the mortar is defcribed from the fame center as the bottom of the chamber. The letter d in the content of the chamber and that of the weight of metal, expreffes the cube of the diameter of the bore in inches; that is, $d=2197$ in a thirteen inch mortar, and $d=$ 1000 in a ten inch.
The reader may fee that the diameter of the bore is' o be divided into 30 equal parts, for a fcale to fet off Il the reft of the dimenfions. The fame fale ferves 0 conftruct their beds, which renders the whole eafy in uniform, a neceffary confequence of well fettled rinciples.

Remarks on thefe dimenfions.

We have endeavoured to difpofe the metal in fuch a nanner, as to make the ftrength of the parts nearly in roportion to the forces which act upon them: at the hamber it is fufficient, though lefs than in moft mortars ow in ufe; for the thicknefs of metal there is greater pan its diameter, which is more than ever has been lowed in any brafs gun whatever; it is true that the fort alfo is greater, but then an allowance has been pade accordingly: we made a reinforce, merely to omply in fome manner with the common practice, nough the mortar fhould be conical from the chamber p the mouth, according to the action of powder, as roved before; however, the difference between the inforce and chace is no more than juft fufficient to dmit of an ogee, whereby the mortar looks more raceful to the eye; at the mouth the projection is no reater than is neceffary for the mouldings, more would e fuperfluous, and make the mortar top heavy; bedes, as we fuppofe it capable of being either raifed or epreffed, and not fixed to its bed, as hitherto the cuftom, pat operation would thereby become more difficult. As

76 ARTILLERY.

to the vent, we do not pretend to determine its true place, though we have always found the nearer it was to the bottom the farther the fhell went; but as thele experiments were made with a three inch mortar only, no juft conclufion can be drawn from thence with regard to larger.

The cylindric figure of the chamber, is, in my opi. nion, the beft for thefe kind of mortars; for though we have fhewn that the concave figure, or thofe whof entrance was the leaft, will throw the Ghell fartheft of any with the fame charge; yet in this cafe, where but little powder is required, their entrance would become too narrow and inconvenient to clean; whereas when they are cylindric, the difference between the advantage of the one and the other will be but little, and not attended with any inconveniencies.

Colonel Defaguliers and myfelf made feveral expe. riments with different chambers, which contained the fame quantity of powder, and we found that the cylindric threw the fhell always farther than any other whofe entrance was larger, and more efpecially when they were not quite filled. We made likewife fome other experiments, which were, by putting as much powder as would fill half the chamber into a cartridge made of common writing paper, and when it was put into the chamber, fo as to be clofe to the fhell, leaving a vacancy at the bottom, it threw the fhell near twice as far as when the cartridge touched the bottom, and the vacancy was left between the fhell and the powder; we repeated this experiment feveral times, and found always the fame effect. Another remarkable thing happened; I puta piece of common writing paper upon the powder, the chamber being but partly filled, and the fhell went much farther than with the fame charge when there was no paper. Laftly, we compared two chambers of the fame content, the one cylindrical, and the other conical ; they had both the fame height, and the diameter of the bottom of the conical one was but half the diameter of

ARTILLERY.

the entrance, and when thefe chambers were not quite full, the cylindric one threw the fhell much farther than the other, and this happened as often as the experiment was repeated. Whoever confiders thefe experiments with fome attention will find, that we know very little of the effects of gunpowder as yet, and that we ought to depend upon nothing but what has been tried.
That our chambers hold a fufficient quantity of powder for any occafion whatever, has been proved by experiments; for I fired a three inch mortar, with an ounce and a quarter of powder, at an angle of elevation of 45 degrees, and the fhell went 1200 yards; and fince our mortars are fimilar to that tried, the powder will give the fhell the fame velocity; but becaufe the refifance of the air is in this cafe inverfely as the fhells diameters, the three inch fhell will meet above four times the refiftance of a thirteen inch fhell; from whence, and fome other experiments made upon Woolwich Common, with the prefent thirteen inch mortar, I conclude, that the thells in our mortar will range about a mile, which is more than is wanted; for when the ranges are greater, they are fo uncertain, and it is fo difficult to judge how far the fhell falls fhort, or exceeds the diftance of the object, that it ferves to no other purpofe than to throw away the powder and fhell, without being able to do any execution.
The firft of thefe mortars is of the fame length with our land mortars; the fecond with the French; but the third is fhorter than either. The reader may eafily fee, that thefe dimenfions are general for any fize of mortars whatever, as all conftructions ought to be, whereby they become all alike; and confequently one of them being found ftrong enough by practice or experience, all the reft will be fo too; which can never be the cafe in particular conftructions, as hitherto has been the cafe in all countries fo far as I know.

ARTILLERY.

To find the weight of metal.

The fquare of the mean diameter 41 of the? muzzle part, multiplied by 30 , gives - $\}$

The fquare of the diameter 44 of the reinforce, multiplied by 18 , gives --

The fquare of 34 , the chamber part, mul- $\}$ tiplied by $34 \frac{1}{3}$, gives

Four times the trunion 2940, for the trunions? and mouldings

Sum total in cubic parts of the diameter of $\}_{136727}$ the bore

50430
34848

The content of the bore in like parts is - 44100
The content of the chamber is
The two laft fums fubtracted from the con-? tent of the mortar, leaves - _ 90594

This reduced in the ratio of 452 , to $355, ?$ of the fquare of the diameter to the circle, $7115:$ gives of metal, we get But as the diameter d is divided into 30 equal parts; if we fay, as the cube of 30 is to the cube d, fo is 22605 to the weight of the mortar of the firft fort, it will be found to be $\frac{5}{6} d$ nearly. In the fame manner arc
found the weights of metal of the other two mortars. found to be $\frac{5}{6} d$ nearly. In the fame manner art
found the weights of metal of the other two mortars.

To find the contents of the cbambers.
The fquare of so multiplied by the length, reduced $20 \frac{1}{3}$, gives 2033 in the firlt mortar; but as the dia. meter is divided into 30 equal parts, if we lay as the cube of 30 is to the cube d, fo is 2033 to $\frac{2033}{27000} d$, we

ARTILLERY.

get the cubic parts of the diameter. Now, becaufe the djameter of a cylinder, which holds one pound of powder, is 3.16_{5}, according to Sir Fonas Moor, if we divide the laft number by 3 t .7 , the cube of that diameter, we fhall have $\frac{2033}{855900} d$, for the content of the chamber; which being reduced, gives $\frac{d}{42 \mathrm{I}}$ or $\frac{d}{53^{17}}$ nearly. In the fame manner are found the contents of the chambers of the other mortars.
In order to compare thefe mortars with thofe ufed at prefent, we fhall infert their weights and charges in the following tables.

Weigbt of the new mortars.
Diam.
Fiift
Second
Third

13	10	8	6	
$16: 1: 10$	$7: 1: 21$	$3: 3:$	6	$1: 2: 11$
$13: 0:$	0	$5: 3: 22$	$3: 0: 0$	$1: 1: 0$
$11: 3:$	0	$5: 1: 12$	$2: 2: 27$	$1: 0: 15$

Weight of the powder.
Diam.
Firft
Second
Third

13	10	8	6	
$5: 3$	$2:$	6	$1:$	3
$0: 8.2$				
$4: 15$	$2:$	4	$1:$	2
$0: 7.8$				
$4: 11$	$2:$	2	$1:$	1

Weigbt of the prefent mortars.
Diam.
Wt.
Cham.

13	10	8	5.8	4.6
$25: 0: 0$	$10: 2: 18$	$4: 0: 10$	$1: 1: 0$	$0: 3: 0$
$9: 1: 8$	$4: 0: 0$	$2: 0: 10$	$1: 0: 0$	$0: 8: 0$

Hence if we compare the weights of our mortars with thofe of the prefent ones, we fhall find the difference be. tween the 13 inch to be, 8:2:18; between the 10 inch, $3: 0: 15$, and between the $8 \mathrm{inch}, 0: 1: 4$ Now as the difference between the weights of the 13 inch mortars, is much greater than between any others, it is evident they are much heavier in proportion than they ought to be, in refpect of the fmall ones; it ap. pears therefore, that no true proportion has been ob. ferved in their conftruction.

Though our mortars are fo much lighter than the prefent ones, yet I may affirm, they are equally ftrong, becaufe they are as thick at the chamber as they need be; and at the muzzle, or where the leaft thicknefs is, ours are ftronger; for the 8 inch mortar is but an inch in that place, whereas ours is 1 inch and a third; the 10 inch, is 1.6 inches thick, ours $1 \frac{2}{3}$; and as to the reinforce, it is loaded with more metal than it need be, fince the force of powder is very little more there than at the muzzle. But the difference between the weights arifes chiefly from the chambers, which are both wider and longer in the prefent mortars than in ours, and therefore they require more metal.

> General Dimenfions of bowitzes. Fig. it.

Diameter of the bore, - - $30|30| 30$

Length of the bore,	-	90	90	97.5

Diameter of the chamber, $-\left.\left.15\right|_{15} ^{15}\right|_{\text {Lengh }}$

ARTILLERY.

Length of the chamber, - - 33
From the muzzle a, to the reinforce $b_{\text {, }}$
Length of the reinforce $\mathbf{b c} \mathbf{c}$, -
From the reinforce c, to the end of the howitz, $\quad-50$
Total length of the howitz, 134
Thicknefs of the metal at the muzzle, $\quad 8$
Thicknefs near the reinforce - 9
Thicknefs at the reinforce; - 10
Thicknefs at the chamber, $\quad 16$
Breadth of the muzzle and bafe
ring, fillets included,
Breadth of the ogees, that behind the reinforce excepted,
Diftance between the muzzle and
breech, ogees and aftragals, -
Breadth of the aftragals and fillets,
Breadth of the ogee behind the re-
inforce,
The muzzle and bafe ring project
the metal by - 1.5
Length of the trunions - 18
Diameter of the trunions - 15
Diftance of the trunions from the

$\begin{array}{l}\text { fore end of the reinforce, } \\ \\ \text { The chamber contains powder, } \\ \text { Veight of the howitz, }\end{array}$	-2.116

8
9
10
16

The cafcable is 24 parts long, the radius of the buton 8 , the ogee and fillet included 4.
The reader may oblerve, that for want of room in he plate, the button could not be marked, which he pay eafily fupply from the given dimenfion in the fame panner as in guns.

The

$$
82
$$ ARTILLERY.

The dimenfions of the firt howitz are nearly the fame as thofe of the prefent, the chamber part excepted; the reinforce is not fo, ftrong as it is commonly made, without any ground or reafon, becaufe the force of explofion acts but very little more there than at the muzzle. The dimenfions of the fecond are lefs, and yet I am perfuaded fufficient; for a 6 inch howitz is an inch and 4 thick near the muzzle, whereas the prefent 8 inch mortar is barely an inch in that place; for which reafon I would prefer the fecond fort before the firft, becaufe there can be no reafon affigned to load them with more metal than is neceffary.

The third fort is a quarter of the bore's diameter longer than the other two, and the reft of the dimenfions the fame as the firft; hence the artillerift is left to his choice to ufe which he likes beft.

Weight of the bowitzes and powder.

Bore,	13	10	8	6
$\mathrm{c}^{1 \mathrm{ft}}$	44: $0: 132$	20:0: 9	10: I: 0	4: 1: 5
Weight 2 d	38:2:811	17:2:3	9:0:03	3: $2: 24$
C3d,	47:0:72	21: $1: 14$	10: $3: 13$	
Powder,	18:15: 0	8:9:14	4:6:911	1:13:12

Weigbt of the prefent bowitzes and powder.

Bore, -	10	8	5.8
Weight	31: $3: 26$	12: 1: 6	4:0:18
Powder,	18:0:0	4:0:0	:0:0

Fro hat t ban i hould Now s the 4:0 When ions nortal Thi afione blerv ot on fred, gain, thers, lifpofe ump hofe It is seen ion lil hells, han 0 sut he fla pould

> ARTILLERY.

From thefe tables of the weights of howitzes, we fee hat the prefent 10 inch weighs about one third more han it fhould do in refpect to the 8 inch, for the weights hould be in proportion to the cubes of the diameters. Now the cube 512 , of 8 , is to the cube 1000 , of 10 , s the weight $12: 1: 6$, of the 8 inch, is to the weight 4:0:3, which fhould be the weight of the 10 inch. Whence it evidently appears, that no better proporjons have been followed in conftructing howitzes than portars.
This fuperfluous weight of the 10 inch howitz has ocafioned its difufe, at leart thefe 25 years; whereas by bferving a due proportion, and fuch as our fecond fort, ot only a 10 inch but even a 13 inch might have been fled, if it had been thought proper. It may be obferved. gain, that though ours are fo much lighter than the thers, they are full as ftrong, becaufe the metal is better iifpofed over all the parts, and there is not that ufelefs ump at the muzzle, reinforce, and trunnions, as in hofe made at prefent.
It is to be wondered that no greater ufe has hitherto peen made of howitzes, fince the fhells may do execuion likewife as hhots, and befides grapes of ahots, or hells, might be fired out of them to more advantage han out of guns, efpecially in a fiege where the diftance s but fmall; and in the field, if they were placed in he flanks, or between the battalions; the terror they vould caufe, efpecially amonglt the horie, by rolling mongft the ranks with the fufe burning, and the expectation of their burfting every moment, would diforder the braveft men, by means whereof they might afily be broke, and the day thereby won.
In a fiege where the works are not lined with walls, or then the walls are once battered down by cannon, there an be no fpeedier way to complete the breach than by fring fhells into them; for they will lodge in the earth, and when they burft will produce the fame effect is mines. This practice has been recommended by

$$
\text { G } 2 \text { St. Remy, }
$$

ARTILLERY.

St. Remy, and the French followed it in the fiege of Bergen op-200m, where they chiefly ufed mortars, mount ed upon field carriages for that purpofe; befides, when you are pretty near the enemy's works, grapes made of fhells will do wonderful execution, as I have been af. fured by fome artillery officers, wha have tried it, and found that all the fufes took fire.

As howitzes are eafier carried from one place to another than mortars, which require alfo a good deal of time to prepare the ground, to lay the beds, and mount them, the ufe of the former would be more convenient than the latter in all cafes, except in throwing fhells upon powder magazines. It may be obferved, that the wheels and axletree of the prefent 10 and 8 inch howity carriages, are of the fame ftrength as thofe of a 24 and 18 pounder's carriages, without any judgment or rea. fon. For fince the wheels of an 18 pounder's carriage fupport a weight of $48: 0: 0$, which is juft four times the weight of the 8 inch howitz, there is not the leat proportion obferved between the weight and the ftrength to fupport it; it is true, that an 8 inch Thell is heavier than an 18 pound ball, but when it is confidered that the force of the fhell affects the carriage in its recoil only, and not at all the wheels; this can be no reafon for making them fo ftrong as has hitherto been the cuftom,

> Of Sea Mortars.

As thefe mortars are generally fired at a much greatef diftance than ever is required by land, they are made fomething longer and much heavier than the land. Their proper dimenfions can only be determined from their charges of powder. The chamber of the prefent 13 inch holds 32 pounds of powder, though the late General Borgard told me, he never made ufe of more than 12 pounds, and as he had more experience in that fervice than perhaps any other, we may depend on what
ARTILLERY. he faid ; befides, fome very expert officers employed in he late war affured me they never exceeded the charge of 15 pounds. Now, as this chamber is never half filled, he powder won't act fo forcibly as if there was no acant face between the charge and the fhell; it is herefore plain, that a charge of 12 or 15 pounds of bowder at moft will be fufficient; befides this champer being conical, and its greateft bafe two thirds of he diameter of the bore, leffens the force of powder confiderably, and more fo when not filled, as Colonel Defaguliers and myfelf found by feveral experiments nade with fuch a chamber, and compared with a cyindric one of the fame content. This being an unloubted fact, the following dimenfions will, I may yenure to affirm, be fufficient in all refpects.

General dimenfions of fea mortars. Fig. 10.

The content of the chamber, - -126
Weight of the metal, - \quad 2.1d

The arcs which determine the round part of the mortar are defcribed from the fame center which d_{d} termines the bottom of the chamber: the weighto metal, and that of the powder which the chamber con tains, have been found in the fame manner as in it guns, allowing four times the value of one trunion fo the trunions and mouldings.

Weight of sea mortars and powder.
Diameter of the bore, prefent fea mortars, the firlt new mortar, the fecond,

The enormous weight of the prefent 13 inch morta proceeds from the antient notion, that thofe pieces whicy throw a fhell fartheft are the beft; for which reafon the artift imagined, that the heavier they were, the farthy they would carry. But by the account of all thofe af tillery officers whom I have converfed with, and wha have been employed in that fervice, the fhip or bomb ketch is not able to bear the fhock of thofe mortars when loaded with their chambers full of powder; and confequently it is ridiculous to make them fo heary.

ARTILLERY.

The firtt of the new mortars is as ftrong at the muzzle as the 10 inch prefent one, and confequently ftrong enough upon all occafions; and I may venture to affirm, that the fecond fort is fo too; fince it is above twice as ftrong as the land. With regard to the fize of our chambers, we have hhewn before, that they never ufe above 15 pounds of powder in bombarding; we have likewife proved in the theory of powder, as well as by feveral experiments, the great aḍantage a cylindric chamber has over the conic when the greateft bafe is uppermoft, fo that there cannot remain the leaft doubt but that our chambers are full as large as they need be on any occafion.
It may appear ftrange to fome of my readers, that mortars fo much lighter than the prefent fhould be near equally ftrong. I account for it in this manner, their chambers are near twice as long as ours, and as the thicknefs is very great in that place, there mult needs be a great deal more metal there than is neceffary; the fame thing may be faid with refpect to the reinforce part, which without any reafon is made about twice as ftrong as the muzzle part; though the force of explofion is nearly the fame in both places. This was never confidered in the conitructions of old mortars.
In the bombarding of Havre de Grace, the mortars were fired quick and with a full charge, by which they were fpoiled and rendered ufelefs in a fhort time; for the vents grew fo large, and the metal melted in the chambers, that it would have been dangerous to fire them any more, and fo were rendered entirely ufelefs.

It has been obferved both in guns and mortars, that the great thicknefs of metal, inftead of being an advantage, renders them fooner ufelefs. For at the battle at Lafeldt feveral 6 pounders, that weighed 1900, were fpoiled, and the light, which weighed but $4: 3: 0$, received no damage; and our fea mortars generally fail when much fired with great charges; whereas the land, which do not weigh one third of the others,

[^1]
ARTILLERY.

fcarcely ever fail: the reafon of this is imagined to be, that thin metal heats not imperceptibly fooner than thickef, and cools much fooner ; and when thick metal is once much heated requires a longer time in loading, and confequently accumulates the heat to fuch a degree as to make it incapable to refift the flock of the fire. This is confirmed by experience.

Plate IV. Fig. 12.

The following mortar with a concave chamber is, ! think, preferable to the two former; the bafe a b, of $c d$, is ten parts; the diftance between the lines $a b$, and cd , is 26 parts ; and its greateft tranfverfe diameter 20 ; the thicknefs of metal at the chamber is 16 parts, as before; the outfide form is fimilar to that of the chamber, and all the other dimenfions are the fame as thofe of the firft of the two preceding mortars. This mortar will weigh nearly as much, and its chamber contain the fame quantity of powder as the firft; but as the entrance of it is to that of the former, as 4 to 9 , the powder will adf with a greater force; for which reafon it is preferable,

As the entrance is wide enough to introduce the hand, and clean it without any inconveniency, it may be loaded with as much eafe as any other; whereby we avoid the objection made by fome againft thefe kinds of chambers.

As to the placing the vent both in guns and mortars in the beft manner, I muft confefs it is beyond my knowledge; and it appears to me, that nothing but experiments can determine it; for thofe I made with two fmall mortars appear fo contradictory to theory, and the notion we have in refpect to the explofion of powder, that I am more uncertain than ever; and it is very probable they will vary more in thofe of larger calibers, tur which reafon we leave it undetermined. I fuppofe ir, in all the preceding draughts, pretty near the end of the chamber;

> A R TILLERY.
chamber ; becaufe the few experiments I made fhewed that to be the beft place in fmall mortars.

Shells. Plate IV. Fig. I4.

As the dimenfions of fhells are undetermined, and no proportion obferved therein, nor is it known how much the thicknefs of the bottom ought to exceed that at the fufe hole, fo as they may burft in the greateft number of pieces, we have in the following dimenfions obferved the proportions of the prefent 13 inch ones; fo that if they are right, we are certain that ours will be fo too; but if it fhould fo happen, that the fhell of any other caliber is found to have a better proportion than that we have made ufe of, the general dimenfions may eafily be made in the fame proportion, by faying, the diameter of the fhell is to 30 , as any part expreffed in inches, is to the fame part, expreffed in parts of the diameter divided into 30 equal parts.
Diameter $\left\{\begin{array}{lll}\text { of the bore, } \\ \text { cd of the fhell, } \\ \text { of the hollow fphere, }\end{array},-\quad \begin{array}{ll}30 \\ \text { on }\end{array}\right.$
Thicknefs $\left\{\begin{array}{l}\text { of metal at the fufe hole, }\end{array}\right.$ Diameter $a b$ of the fufe hole,

The weight of the fhell unloaded, - $-\frac{11.7}{236.5}$
Weight of the powder the fhell contains -
The fufe hole is conical, and when produced, terminates at the extremity d of the diameter cd , which paffes through the center.
There are two handles of hammered iron fixed in the mould when they are caft, which faften to the fhell, and ferve to lay hold on when the mortar is to be loaded thereby, as likewife to carry them from one place to an-
other.

ARTILLERY.

other. In Fnance thefe handles are caft iron; but this renders them clumfier, and liable to break fooner than the others. The letter d ftands here for the cube of the diameter of the bore, as well as in the conftruction of mortars.

Two reafons are given for making fhells thicker at the bottom than at the fufe hole; one is, that they are thereby better enabled to refift the fhock or impreffion of the powder-that difcharges them; the fecond, that the fheil always falling with the heavieft part undermot, the fufe will of courfe be uppermoft, and therefore will not be extinguifhed by its fall. Both thefe reafons are, in my opinion, of no confequence; for if the fhells were every-where equally thick, and of the fame weight as thofe above-mentioned, the blaft of powder lodged in the chamber would hardly be able to break them; and as to the fufe falling uppermoft or not, that is of no detriment, fince the compofition of fufes is fuch, that nothing but an abfolute ftoppage from the air is able to choak them; for they burn in water as well as any other element ; for which reafon I would make them every-where equally thick, becaufe they would then burft into a greater number of pieces. But to be certain, it would be eafy to make the experiment.

The quantity of powder they ought to be filled with, fo as to burft into moft pieces, is not known ; but moft artillerifts agree that they fhould not be quite full; and Colonel Defaguliers, after having made feveral experiments, imagines, that two thirds of the weight which would fill them is the quantity they fhould be loaded with.

Weights of the prefeint foells and powder.
Bore,
Wt.
Powd.

ARTILLER Y.

Weights of the new spells and powoder.
Bore,
Wt.
Powd.

13	10	8	$5: 8$	4.6
$1: 2: 15$	$0: 2: 27$	$0: 1: 14$	$0: 0: 16$	$0: 0: 8$
$9: 4: 8$	$4: 3: 102: 2: 10$	$0: 13: 3$	$0: 6: 9$	

It is to be obferved, that the windage of the prefent thells is a quarter of an inch, let them be great or fmall, which is contrary to all reafon; whereas we allow $\frac{1}{8}$ part of the bore's diameter, which is fomething lefs in a 13 inch one, and decreafes in proportion to the fhell's diameter; whereby our fmall fhells become fomething heavier than the prefent.
There is another kind of mortar which ferves to ling ftones into an ehemy's works, when hear at hand; fuch as from the town into the trenches in the covert way, or upon the glacis, and from thefe trenches into the town, or ravelins. As we have none of that fort here, I fhall give fuch dimenfions as agree nearly with thofe mentioned in St. Remy, whofe diameter is 15 inches.

Dimenfions of fione mortars. Fig. 13 .
Diameter of the bore,
Diameter of the cylindric part to hold a wooden tapeon,
Depth or axis of that cylinder,
From the muzzle to the reinforce,
l.ength of the reinforce,
Thicknefs
 \{muzzle.
Thicknefs of the metal at the $\begin{array}{ll}\text { meinforce, } & \begin{array}{l}\text { marle } \\ \text { res }\end{array} \\ 4.5\end{array}$

The chamber enters into the trunions, by - 2 Diameter of the trunions,
Length from end to end of the trunions, - 40 : Breadth of the $\left\{\begin{array}{l}\text { muzzle ring and fillets, } \\ \text { chamber belt, } \\ \text { c }\end{array}\right.$ Breadth of the $\left\{\begin{array}{l}\text { chamber belt, },-, \\ \text { ogee next to this belt, },\end{array}\right.$

Content of the chamber,
Weight of the metal contained in this mortar, 3.1
The bore is terminated by two quadrants of a circle, terminated by the reinforce and lines drawn from the ends of the cylinder made to lodge the tapeon parallel to the axis of the mortar; and the round part on the outfide are arcs defcribed from centers, taken in the line which terminates the reinforce, and fo as to meet the extremities of the belt. The bottom of the conic chamber is terminated by an arc of 60 degrees, and she round part of the outfide is a femi-circle.

Thus a 15 inch ftone mortar weighs $10: 3: 4$, and the chamber contains 3 pounds of powder; this agrees very nearly with the French mortar of the fame fize, which weigh 1000 pounds. When it is confidered that we made the chamber part ftronger than theirs, we conceive that this mortar may likewife ferve to throw barkets full of hand-grenades, which will be much more dangerous to an enemy than ftones.

The reader may eafily perceive, that the conic chamber is very proper here in this cale, as a great force is not fo much required as the extent of that force againt the tapeon, for fear it might break it in the middle.

The form of the bore at the bottom being different from that in other mortars, is likewife adapted here to the bodies to be thrown out of it; baikets are made to fit the bottom of the bore, which, when filled, are let into the mortar by means of two handles, in order to load it quicker. The ftones generally made ufe of upon this occalion are pebbles the bignefs of a man's fift, and as round as can be found. But as we faid before, handgrenades or fmall Thells made for that purpofe, of about two or two and a half inches diameter, will anfwer the purpofe much better than ftones. This has been practifed at Bergen-op-zoom with a common mortar, and fucceeded to the fatisfaction of the artillery officers who tried the experiment.
Having thus given general conftructions for mortars ufed on all different occafions either by fea or land, it remains to fhew in what the ufe of howitzes differs from that of common mortars; as they are carried upon gun travelling carriages, they are eafily tranfported in the field from one place to another, and are more readily fired than the others; they have likewife another advantage, which is, that they may be laid to any elevation, whereas the common mortars are fixed upon their beds at an angle of 45 degrees, whereby they are not fo ufful in a fiege : for the fhells thrown into the works, either from the trenches into the fortification, or from the fortification into the trenches, fhould always be directed in a lefs elevation than 45 ; and when they are to be thrown upon powder magazines, or any other building, with an intention to deftroy it, the elevation fhould be greater, in order that they may fall with more force.
All thefe confiderations are feeming advantages in favour of the howitzes; but if we confider that a 10 inch howitz weighs confiderably more than a 13 inch mortar, and an 8 inch one more than a 10 inch mortar, it is eafily perceived that the ufe of howitzes is not fo fuperior to that of the common mortars as is imagined by moft artillerifts. As to the differeat degrees of elevations in which
which they may be directed, it is a property that mortank ought to have as well as they. For there is nothloo leaft occafion to fix them on their beds fo as, not torber moved, fince no nation but this does it, nor follabit them on their beds with fo much cordage, as if, theit weight was not fufficient to keep them in their fityationd The reafon given for this practice is, that if they not lafted to their beds they would kick up befoes fall backwards, which is trifing: and inconfifteps with the rules of mechanics; befides the Frensb mottem, which are much lighter than ours, and are not tied never overfet; and as no nation makes more ulfe of them than they do, it is very improbable they fhoold negleet a thing of that kind if there was any necefify for it.
As to the advantage of carrying howjizes, ypop in. velling carriages, it is as infignificant as the, reff, fincol no realon can be given why mortars may not be cantiod in the fame manner. That this may be done, appectre from the practice of the French during the lat wita But what will not people do to fupport an old cuftom let it be ever fo abfurd?

P A R T IV.

Conftruition of bip and travelling Carriages.

THERE are three different forts of gun carriages namely, thofe yfed in garrifons, at fea aboand fhips, and in the field. The two firft differ only in fome iron rings, and alfo that the trucks or wheels of gar: rifon carriages are made of caft iron; whereas hip carriages are of wood; but the reft of the conftruction is the fame.

Conftruction of Jhip and garrifon Carriages.
 Plate V. Fig. ${ }^{\circ} 5^{\circ}$

In a line A B, take two points C, D, fo as their interval be equal to the diftance from the center of the runions to the extremity of the breech, that is, equal I0 three fevenths of the gun's length; through thefe points draw two lines at right angles to AB ; in the firlt pake CE, CF, each equal to half the diameter of the fecond reinforce ring; and in the fecond DG, DH, each equal to half the diameter of the bafe ring ; then the lines drawn through the points E, G, and F, H, will determine the width within of the carriage.
If to thefe lines there be drawn two parallels at a caliber's diftance, they will determine the breadth of the fide pieces; and by fetting off from D to B , the length of the cafcable, and from C to A , half the diameter of the trunions and half the diameter of the fore trucks; then will AB be the length of the carriage.
The line EF paffes through the center of the trunion holes, which are a caliber. and whofe center is a quarter of an inch below the upper furface of the fide pieces. On each fide of GH fet off 6 inches for the breadth of the axletree, which is always 12 inches broad; and the fore part of the trunion holes is the center line of the fore axletree, whofe dimenfions, as well as thofe of the trucks, are given in the following table.

$$
\text { Fig. } 16
$$

The height of the fide pieces is $4 \frac{3}{4}$ diameters of the Thot before, and half that height behind; and if half the length of the fide pieces be divided into four equal parts, beginning at the hind end, you will have the Ateps; the quarter-round is taken from the fore part. The lower part of thefe pieces is hollowed in the form

ARTILLERY.

of a circular arc, in order to make them fomething lighter without diminifhing their ftrength. Both axle trees are funk into the fide pieces in the manner repic fented in the 17 th figure; and as to the tranfom, wo chufe to place it directly over the fore axletree, it is 2 diameter of the fhot broad, and two high, and placed exactly in the middle of the height of the fide pieces; though it is cuftomary to place the fore part in a line paffing through the center of the trunion holes, and fo as to project the axletree by an inch, and the lower edge to touch the axletree,

Thefe dimenfions are expreffed in inches and decimals; and as the arms of the hind axle-tree have the fine dimenfions as thofe of the fore ones, they have ben omitted, as well as the beight behind the fide pices.
It may be obferved, that thefe dimenfions were ufed in 1748 ; but if the guns are made different from thole at that time, the length and width of the carriages will Iisewife differ. The height of the fide pieces and the diameter of the trucks depend on the height of the portwhes in fhips from the deck. - Thofe of the lower tiers woght to be fuch, that when the breech of a gun lies ypon the hind axle-tree, the muzzle of the gun flould woch above the port-hole, in order that it may not pufh det hatter open when the fhip rolls in ftormy weather.

Gencral confruciion of carriages for new Guns.

We fuppofe the diameter of the fhot to be divided mo 24 equal parts, as in the conftruction of the gun, fo thr the guns and their carriages may be conftructed by itfame fcale; which is both more methodical and eafier in the reader and the artilleritt.
This being fuppofed; take CD equal to 6 diameters the fhot and 10 parts; and CE, CF, each equal to 4 parts, as likewife DG, DH, each equal to 39.5 ; it breadth of the fide pieces is a diameter or 24 parts; PB to a diameter and 12 parts; AC to 2.5 diameters. The breadth of the fore axle-tree is 30 parts, its length diameters; the length of the arms 44 parts, and kir diameter 24. In the elevation, the height before (the fide pieces is $4^{\frac{3}{4}}$ diameters, and behind half that kght; the height of the fore axle-tree is 42 parts, that (the hind one 30 ; the bed bolt paffes under the midtof the fourth ftep, and even with the lift or hind ftep. The breadth of the wooden trucks is always equal to tu of the fide pieces, which is here one drameter or :parts; the diameter of the fore ones 4 diameters,
and that of the hind 3 diameters and a half: but we have obferved before, that if the port-holes in thips are mad higher or lower, thefe diameters muft be increafed diminifhed.

The Frencb make ufe of a carriage on board of hil with two trucks before only, and are preferred by man officers to thofe of 4: I had fome of them made, whic feem to anfwer very well; they are nearly of the fam height before as the comnion; but to leffen the grea height of the fide pieces, the trucks are made of a large diameter; they have no fteps, and behind have a tran fom for the ftool-bed to reft upon inftead of the body the hind axle-tree. Thefe carriages do not reco fo much, and are more readily pointed, becaule th trucks are not tight to their axle-tree. When they a traverfed but a little, the carriage will move without th truck, and then fall back again fo foon as the hand fpike is taken away.
The French garrifon carriages are made much in th fame manner; but the trucks are made larger and feveral pieces, and have a trail like travelling carriage but much fhorter.

Fig 17.

This elevation fhews the infide of the fide pieces, wiil fome of the irons, not elfe to be feen, and the manner would have the fide pieces let into the axle trees, whi is more fimple, and yet equally as fecure as the con mon manner, as likewife how the tranfom is to placed, and not obliquely as the cuftom is. The re of the figures in this plate fhew the plans and elevatio of the axle-trees and the ftool-bed, as well as the tra fom.

Irons for Jhip Carriages.

The garrifon carriages have the fame irons, excepting the breech rings, and their trucks are of caft iron; for which reafon their axle-trees have copper clouts underneath, to diminifh the friction of the iron againft the wood.

Of travelling Carriages. Plate VI. Fig. 19.

Previous to their conftructions, it is neceffary to mention the names of the feveral parts they are compoied of, which are as follows. The long fide pieces Q P, RS, are called the Cheeks; the fore part Q R of the carriage, the Breaft ; and the hind part P S, the Trail; T, the Trail Tranfom; V, the Center Tranfom; X, the Bed Tranfom ; and Y, Breaft Tranfom; GH, the

100

ARTILLERT:

Body of the Axle-tree; m, n, the Trunion Holes; and w, the Pintle Hole.

Dimenfions of the prefent Cbeeks.

N. B. The under part of the axle-tree fhould be in one continued right line, as we have fhewn in our Elements of Matbematics.

All the dimenfions in the preceding tables are in inches and decimals, except the length of the cheeks, which are in feet.

Confruction of travelling Carriages. Plate VI. Fig, 88.
Let Abcd be the plank, and AB the height be fore of the cheeks; fet off from B to C the fum of the head $A B$, and the diftance from the hind part of the trunions
tunnions to the extremity of the cafcable; then from the point A as center, defcribe an arc CD through the point C, on which as a chord fet off the height at the center, and draw the lines AD, BC. On BC take $B E$, equal to the head $A \cdot B$, and towards the head Er, rS, each equal to half the diameter of the trunnions, Io that E S will be the width of the trunnion hole, whofe center is about a quarter of an inch below the line B C. From the point r draw $\mathrm{r} F$, perpendicular to AD ; in AD take FH , equal to the breadth of the axle-tree, which is funk about an inch into the cheeks. On the ide FH make a fquare, and from the interfection I of diagonals, as center, defcribe an arc, with a radius of 29 inches, or equal to the radius of the wheel; this are will reprefent a part of the wheel. Then if a ruler be laid fo_{0} as to touch this arc, and cut the plank in two points ML, fuch that the diftance ML be equal to the length of the trail, and you erect at thefe points two perpendiculars M N, LO, to K M, each equal to the beight of the trail; by drawing the lines CN, NO, and DM, you will have the figure ABCNOLDA of the cheek required.
The part MP is made round, that the carriage may lide with more eafe on the ground, which is done by dividing LO into four equal parts, fo that LP be one of them, by drawing M P; and at the points M and P, teeting two perpendiculars on D M, and on M P, which meeting in Q, then the point R, which bifects $M Q$, will be the center of the arc MP required.
The mortife V of the center tranfom is determined by drawing a line through the point C , perpendicular to the horizon $K \mathrm{M}$, in which C p is taken equal to a fourth part of the fhot's diameter, and pqequal to two of thefe diameters for the height, and in pz , parallel to $K M$, the breadth $p \times$ equal to one diameter. The ditance between the center and bed tranfom \mathbf{X} is two diameters; this laft is a diameter each way. The breaft franfom Y is a diameter broad and twa high; the fides H_{3} are

ARTILLERY.

are parallel to the head AB, and terminate above even with the bottom of the trunnion hole one way, and when produced the infide meets the point S . Laftly, the mortife T of the trail tranfom is equal in length to the trail, a diameter high, and is parallel to the upper fide NO , fo as when the lower is produced to meet the point P.

All thefe mortifes are divided into four equal parts by horizontal lines; the upper part is funk half an inch into the cheeks; the two middle parts are funk to the depth of two thirds of the thicknefs of the cheeks, but the lower part is not funk in at all. They are madein this manner to prevent the wet from getting into the joint and rotting the tenons.

Conftruction of the plan. Fig. 19.

Draw the indefinite line A B, in which take the points $C D$, fo as their interval be equal to the diftance from the center of the trunnions to the extremity of the bafe ring; through thefe points draw EF, K L, at right angles, to A B ; make DK, D L, each equal to the radius of the bafe ring, and CE, CF, each equal to the radius of the fecond reinforce ring; then the lines drawn through the points F, L, and E, K, will determine the width within of the carriage; if to thefe lines two others are drawn parallel, and at a diftance equal to the length of the trunnions, you will have the thicknefs of the cheeks Q P and R S.

On both fides of the points E and F, fet off half the diameter of the trunnions, in order to have the trunnion holes m, n; draw the breaft tranfom \mathbf{Y} of a diameter broad, fo as the infide be in a line with the fore pard of the trunnion holes; and if $C A$ be taken equal tor B in the laft figure, the line $R Q$ at right angles to $A B$ will determine the breaft of the carriage, and the tota length $A B$ of the carriage is determined by the laft figure. If you fet off from the line $K L$ two diameters for the length of the cafcable, you will have the hind part of the center tranfom V, whofe width is a diameter as well as the bed tranfom X, and their interval is two of thefe diameters, as has been faid before; the trail tranfom T is determined as before by the length of the trail: In the middle of this tranfom is the pintle hole of an oval figure, wider above than below, that the pintle may have room to play on uneven ground.
The bed w is a board of an inch and a half thick, a foot broad, and funk into the bed and center tranfoms; the width of the axle-tree has been determined before, and its fore part paffes through the centers of the trunnion holes : there is a board fixed upon the axle-tree with one end, and the other upon the bed tranfom, which ferves to lay hay or ftraw upon for wadding.
Between the trail and center the breadth of the cheeks is diminifhed on the infide by a fixth part, beginning at about a diameter from the trail, and ends within a diameter and a half from the center tranfom.
This is the common conftruction of field carriages; but as it relates only to the four calibers, whofe dimenfions have been given, the reader will ftill be at a lofs how to conftruct any other; and as the length of the cheeks depends not only on the caliber of the gun, but likewife on the height of the wheels, as well as on the length of the pieces, which varies very often : therefore, in the following conitruction, we fuppofe the wheels of the common fize, and the guns to be 20 or 21 diameters long, which is the common length at prefent of the 24 pounders.

General dimenfions of travelling Carriages. Fig. 18.

The length Adof the plank is 12 diameters of the fhot and 7.5 feet befides; its height A b three diameters and three quarters; the height A B of the cheeks three diameters and a quarter; 1o that $B b$ is half a diameter, the

ARTILLERY:

height DC at the center 70 parts of that diameter; divided into 24 equal parts, as in the conftruction of guns; the length of the trail is three diameters, and its height MN two; the breadth FH of the axle-tree is two diameters, and the reft of the dimenfions depend on the fize of the gun.

General Conltubtion of travelling carriages for the new Guns.

Plate VI. Fig. 18.
The length Ad of the plank is 10 diameters of the fhot, and 7.5 feet; its height $A \mathrm{~b}$, three diameters and three quarters; the height Ab of the cheeks, three diameters and a quarter. Set off from B to C eight diameters, and twenty parts of that diameter divided into 24, as in the conftruction of guns; then from the point A, as center, defcribe an arc through the point C, on which, as a chord, fet off 90 parts from C to D , and draw the lines AD, BC. On BC take BE, equal to the head AB , and towards the point B , the parts Er, rS, each equal to 9 parts, fo that ES will be the width of the trunnion holes, whofe center is funk about a quarter of an inch into the cheek. From the point r draw rF , perpendicular to A D, and in A D take FH equal to 30 parts for the breadth of the axle-tree, which is funk into the cheek about an inch. On the fide FH make a fquare, and from the interfection I of the diagonals, as center, defcribe an arc with a radius of 29 inches, which arc will reprefent a part of the wheel, Now if a ruler be laid fo as to touch this arc, and cut the plank in two points M, L, fo that the diftance ML be equal to three diameters, and there be erected at thefe points the perpendiculars MN, L O, to K M, each equal to two diameters, then, by drawing the lines $C N$, NO, and DM, you will have the outline A BCLDA of the cheeks, The under part of the trail is made

ARTILLERY:

Conffrußion of the plan. Fig. 19.

Draw the indefinite line $A B$, in which take the points C, D, fo as their interval be 7 diameters and 17 parts ; hrough thefe points draw E F, K L at right angles to $A B$; make DK, DL, each equal to 32.5 parts, and $C E, C F$, each equal to 27.5 parts; then the lines drawn through the points F, L, and E, K, will determine the width within of the carriage. If to thefe lines two others are drawn parallel, and at 18 parts diftant, jou will have the thicknefs of the cheeks, QP and RS.
On both fides of the points E F, fet off 9 parts for the radius of the trunnions, in order to have the trunnion boles m, n. If $C A$ be taken equal to $r B$ in the laft jogure ; the line $R Q$, drawn at right angles to $A B$, will determine the breaft of the carriage, and the total length $\mathrm{A} B$ is determined by the laft figure. The reft of the conftruction is the fame as before.

Remarks on tbis comfirution.

Regard muft be had in the conftruction of thefe arriages to their ftrength, and that the piece may lay dole and fteady in it ; as tikewife that the gun may be properly clevated, in cafe ricochet firing fhould be reguired.
The thicknefs of the cheeks are here fuppofed eighteen parts inftead of a caliber, as is ufual; this we efteem bufficient, becaufe pieces are now loaded with no more han one third of their fhot's weight, or ought not at eaft ; which charge has been found fufficient for batterog pieces.
The length of thefe carriages is fuch, that a 24 pounder may be elevated to about an angle of 9 degrees,

106 ARTILLERY. and the fmaller ones to 10, or II and 12 , which ismor than fufficient upon all occafions. The cheeks are nog bent too much at the center, becaufe, if they are, the become very weak in that part. We make the trunioi holes fo as one half of them is over the axle-tree, wherea the common practice is to make them juft withour which, in my opinion, occalions the weight of meta to hang too much beyond the center of the wheels.

Plate VII. VIII.

In thefe plates are the plan and elevation of pounder travelling carriage, with all the irons marke on them, fuch as are now made.

Iron-work of travelling Carriages. Tranfom bolts with burrs $\left\{\begin{array}{l}\text { breait } \\ \text { center } \\ \text { trail }\end{array}\right.$ Tranfom plates with hooks $\left\{\begin{array}{l}\text { breaft } \\ \text { center }\end{array}\right.$ Trunion plates Cap fquares with joint bolts Spring keys with chains and ftaples
Eye bolts $\left\{\begin{array}{l}\text { fore } \\ \text { hind }\end{array}\right.$
Breaft plates

Axle-tree bands Side ftraps
Draught rings with bolts and burrs Locking plates
Lafhing rings with loops

ARTILLERY. to7

Names of the parts of a wbeel. Plate IX.

The dowel pins are wooden pegs, of about three aches long, and three quarters of an inch in diameter ; hey ferve to faften the fellows together; and the dowledges are iron plates, faftened and funk into the fellies on the outfide, fo are not feen here; they ferve to bind the joints of the fellies ftrongly together, each pith four pins.
The nave is always made of elm, cut fix months lefore it is ufed, and left in the bark all the while till it sufed; the fpokes are made of elm or young oak, and ped as dry and well feafoned as poffible; the fellies are likewife

108 ARTILLERY.

likewife made of dry elm, or in default of which you beech fplit in two only will do as well, if not bette and the axle-tree is made of dry elm, young oak, young beech.

The cheeks and tranfoms are always made of dry on account that this wood is very pliable, receivest nails better than any other, and does not fplit; y g have feen fome made of young oak, and am of oping it is much ftronger than elm, and I think may anff better.

Dimenjions of wheels for travelling Carriages.

Caliber	24	22	6	3
Wheel, diam. inch	58	58	58	5
Nave, length	17.5	17	15.5	15
Di. ${ }^{\text {bod }}$	15	15	13	12.
Diameter \{ middle	16	16	14	13
		13.5	19	10
Fellies $\left\{\begin{array}{l}\text { thicknefs } \\ \text { breadth }\end{array}\right.$	$\begin{aligned} & 5 \\ & 6 . \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6 \end{aligned}$		3
\{thicknefs	2. 3	2.2	5. 5	$2{ }^{4}$
breadth		4		3

The mortifes of the fpoke fhould be placed in middle of the nave, but the workmen make them inch nearer to the linch. The fpokes are fomewhit near the fellows than at the nave; they are liker inclined towards the linch three inches in a wheel feet high, and fo in proportion in one of any oth diameter; which the workmen call difbing. How t found out that this inclination renders the wheels mo perfect is not eafily known; thofe that I have conven with knew no more than that it was an old cuffo which made me inquire farther into it, and I have fou that it is grounded on true mechanical principles, may be feen in my Elements of Mathematics, page-2

The laft column in the preceding table contains the neral dimenfions of the refpective parts for wheels of yfuch carriages, exprefled by the parts of the diameof the fhot divided into 24, as in the conftruction of mss, and proportional to the dimenfions of a wheel for 24 pounder's carriage. Thefe general dimenfions are yy ufful in feveral refpects : fuppofe it were required make wheels for any other calibers than thofe above, en you muft either refer thereto, or elfe perform the frk by guefs. Again, thefe dimenfions being expreffed the fame parts as the guns, they may both be conwated upon the fame fcale; which cannot be done in common manner without a great deal of labour and ficulty : in fhort, artillery would be incomplete withthem ; becaufe it is not fufficient to know how to ecute what has been done before, but any other work the fame kind that may be neceeflary.
The Span, or interval between the wheels, varies in frent countries ; even every county in England obves a different width, which is very inconvenient for ofe who travel in carriages. The artillery carriages made like thofe in Flanders, which is four feet eight thes; but as the fellies are not of the fame breadth all wheels, we fhall make the diftance between the dale of the fellies five feet in all the carriages ufed land, which are hereafter mentioned, the truck one epped.

Iron-work of an Axle-trec. Plate IX.

ARTILLERY:

Tools neceffary to prove and load Gans.

The fearcher is an iron focket with branches, four to eight in number, a little bent outwards, fmall points at their ends : to this foeket is fixed wooden handle, from 8 to 12 feet long, of abour inch and a quarter diameter. This fearcher is int duced into the gun after it has been fired, and tur sound, to difcover the cavities within ; and after ti diftances are marked on the outfide with chalk, make ufe of another fearcher, that has only one po about which a mixture of wax and tallow is put toin the impreffion of the holes; and if there are any quarter of an inch deep, or of any confiderable leng the gun is rejected as unferviceable to the governme though the iron is fold to merchants. The gun ist proved and fearched twice.

The reliever is an iron ring fixed to a handle by ma of a focket, fo as to be at right angles; it ferva difengage the firt fearcher, when any of its poins retained in a hole, and cannot otherwife be got out

The worm is a double-wired fcrew, fixed to a dle by means of a focket; it ferves to draw out ther ding or bottoms of cartridges which remain in the after frequent firing, and which would otherwife 20 mulate fo much, that other cartridges rould not rammed home enough to reach the priming, whar the gun would mifs fire.

The ladle is made of copper, about three diamd of the fhot long, and the thicknefs equal to the wind of the gun: it is of a cylindric form, having an of ing above of about a fixth part of the circle, and 4
ke a fcoop at the end. The ufe of the ladle is to rroduce the charge of powder into the gun, when it is ot made up into a cartridge, or to loofen the fhot, and raw it, in cafe it is retained by duft got into the gun fier much travelling.
The rammer is a cylinder of wood, whofe diameter nd length are each equal to the diameter of the fhot, ith a handle fixed to it; it ferves to ram home the fhot nd powder when the gun is loaded.
The fponge is likewife a cylinder of wood, from 10 I2 inches long, of the fame diameter with the ramer, and covered with lambikin, fo as to fit the gun ractly; it is commonly fixed to the other end of the mmer's handle in fmall guns, but has a feparate one thofe of larger calibers. The ufe of the fponge is clean the piece before and after it is fired. The IXth late reprefents the forms of thefe tools, whereby the zader may have a clear conception of them.
Guns are proved various ways, to find whether they efufficiently ftrong; the moft common in England is ith a charge of powder, which weighs as much as the pot in all pieces under a 24 pounder; which, if brafs, loaded with 21 pounds, the 3^{2} pounder with 26 and 2 ounces, the 42 pounders with 31 pounds 8 ounces *; ut in France they are charged with two thirds of the por's weight only. Sometimes water is forced into hem, but this proof is infufficient; it has been found, at though the water penetrated through the piece in veral places, yet they were very good and ferviceable. the beft and fureft way of proving pieces made after new pattern, or of fome new metal, is to charge them ith no more powder than they are loaded with in action, nd to fire them 2 or 300 rounds as quick as poffible; nd if they ftand this trial, there is no danger of their

- The charge of the iron 24 pounder is 18 pounds; that of the 2 is 21 pounds 8 ounces; and the 42 is 25 pounds. As to the light ${ }^{3}$ iss field pieces, they are proved with half the weight of the fhot; sept the 24 pounder only, with 10 pounds.
burfting

Burfting afterwards. This hats been done by our lio 6 pounders, when they were firft introduced into o fervice. Mr. De Valliers, lieutenañt-general of it artillery in France, has propoled another method ff proving pieces, which is, inftead of loading them fhot, to ram elay in as hard as poffible two feet det But I doubt whether an iron carnon could ftand fuch proof, nor would I advife the trial.

To conjtruct field Carriages. Plate \mathbf{X}.

As field pieces are fhorter and much lighter than tho above, their carriages likewife obferve the fame portion. They have the fame form; but their whed are only four feet two inches high; which, in my:opi nion, is too low; for the draught of low wheel carriag is known to be greater than the higher: and though th guns are light, yet that is no reafon to make the draugh greater. I think, if they were 4.5 feet high, it woulf be much better; but it being no eafy matter to chang any thing eftablifhed by cuftom, we fhall infert the of menfions ufed at prefent, that the reader may fee what has hitherto been the practice, leaving my obfervation to his judgment, either to approve or not, as he pleafes

Dimenfions of field Carriages.
Calibers
Length
Height $\}$ of the plank
Thickn.
Cheeks, height before
Height at the $\left\{\begin{array}{l}\text { center } \\ \text { trail }\end{array}\right.$
Length of the trail From head to center -

ARTILLERY.

Dimenfions of tbe wobeels.

Of the axle-tree.

Caliber	24	12	6
Axle-tree, length	68	72	76
S length.	39	40	42
Body 2 breadth	6.	5.5	5
(height	8	7	6
Arms, length	18	16	15.7
Diameters $\left\{\begin{array}{l}\text { body }\end{array}\right.$	6	5.5	5
Diameters \{linch	4	31	3.5

Thefe dimenfions are in inches and decimal parts, except bof general ones in the fourth column, which reprefent meters of the fhot and parts, the whole diameter ing divided into 24, as in the conftruction of guns. bie length of the planks are here 13 diameters of the ot and four feet. The width within of thefe carriages my be more or lefs, as the thicknefs of metal is varied. The conftruction of travelling carriages given before, ves likewife for thefe, by making ufe of the laft diponions inftead of the former; the only difference is, 2t there is no bed tranfom here, becaufe fcrews art

114

ARTILEERY.

ufed to raife thefe light pieces inftead of wedges; fo which reafon the center tranfom is two diameters brow and but one thick ; it is placed in the middle of th height of the cheeks at the center, fo that the neck the cafcabte anfwers to the middle of the breadth of d tranfom, the frew being fixed there.

It mult be obferved, that on each fide of thefe ca riages is a locker or box of two feet long, its upperf face even with, or about an inch above the upper part the axle-tree, extending from thence towards the trii and its depth is equal to the height of the axle-th Thefe lockers ferve to hold Thot upon a march, and a covered each by another box that flides on, and isfi ened with a bolt, in which cartridges are lodged, to ready for firing at any time, without having recourle the ammunition carts.

The iron work of thefe carriages is nearly the fad as in the former, only notfo ftrong; and there is but o garnith bolt, which fupports the fore part of the locke and no garnifh nail, though there are three marked miftake in the XIth plate. The eye bolt next to joint bolt paffes through the axle-tree band behind, not before as in other carriages ; the fore part of t band is only faftened by the fore eye bolt. We has marked but one tranfom bolt at the center and one the trail, though they make two at prefent in each thefe places, which is fuperfluous; the Saxon, brought thefe pieces into ule here, made no more. draught hooks are placed tofthe breaft tranfom plat inftead of fixing them to the axle-tree, as practiced; caufe the horfes draw with more ftrength when the hod are nearly breaft high. Laftly, inftead of maki hooks to the crail tranfom plates, there are fubftitu nails about four inches long, which we imagine aremu more convenient than the former. The wafhers his alfo hooks, to which are faftened the ropes by the gunners draw the gun along.

There is one gun carciage more, which is called Galloper; it ferves for a pound and a half gun This arringe has fhafts fo as to be-drawn without a limber, md is thought by fome arcillerifts to be more convenienc ind preferable to other field carriages : and as it may ficewife ferve for our light three and fix pounders, we thill give the following

Dimenfions of a galloper Carriage. Plate XII.

The dimenfions not inferted here may be taken fir the draft.

Of Limbers. Plate XIII.

A limber is a two wheel carriage with thafts, ferves to fupport the trail of field carriages, by mei of the pintle or iron bolt, when they are to be dry from one place to another; they are taken off when the pieces are to be fired. Their dimenfions

${ }^{3}$ All fhafts are about two feet open before, two feet ten inches in the middle, and fomething lefs near the axletree, according as the wood happens to be more or lefs crooked; for it is never cut acrofs the grain, becaufe that would weaken it too much. The bolfter diminifhes towards both ends, as in the drafts; fo that the height given here is to be meafured in the middle.

Iron work of the 乃afts.
4. Limber bolt,
b. Shaft rings,
c. Shaft pins with chains,
d. Breech hooks,
e. Ridge chain with hook and loop,
f. Limber chain with hook and rings,
g. Single forelock keys,
h. Nails, diamond headed,
k. Dog nails,
l. Bolifter hoops,
m. Pintle,
n. Pintle wafher,
Stubs for bolfter hoops,

I 3
The

ARTILLERY.

The irdn work of the wheels and axle-treebeing the fame as before, only lighter in proportion to the wooded work, we think a repetition needlefs.

Remarks.

The wheels of the limbers being but four feet high and the extremities of the fhafts five, the draught of the fhaft horfe becomes fo oblique, that the greateft part of his force is loft in fupporting the fore ends of the fhaftu which the other horfes draw down again, $f 0$ as to bring the whole draught in a right line from the axle-tree id the breaft of the fore horfe; whereby the Chaft horfe in fo thook (the difference between the height of the fore end of the fhafts and the center of the axie-tree bein leaft two feet) that he is fpoiled in a fhort time, rendered unfir for fervice: on the other hand, the bolleen of a 24 pounder limber is 14 inches high from the ceas. ter line of the axle-tree; when the carriage is movingil endeavours to turn the limber about its axis, and thes trail would Alip out of the pintle, were it not for the limber chain that retains it. All thefe oblique motions being confidered, it will be found by thofe converfant in mechanic principles, that worfe cannot be contrived, It is very difficult to contrive better: for the trails of field carriages cannot be altered; and if the wheels wers made higher and the boliter lower, the carriage cannot turn fo well in a narrow road, nor can the trail be fixed under the axle-tree for the fame reafon : the only remed that can be found, in my opinign, would be to fix a poli or fhafts in fome way or other to the head of the siage, fo as to draw it forwards, and the trail to flide of the ground like a nledge; but how this may be done muft be left to fome ingenious workman.

ARTLLLERE:

PARTV.

Of mortar beds and bowitz carriages.

7 HE land mortar beds are here made of folid timber, confifting generally of four pieces ; thofe of the royal and coehorns excepted, which are but one fingle block. As to fea mortars, their beds are made quite different from thefe, as will be fhewn each in their order.

Dimenfions of land mortar beds. Plate XIV.

Bore,	13	10	8	5.8	4.
	Inches 84	66	50	0	0
Lower bed breadth,	33	20	O	\bigcirc	0
height,	13	10	9	\bigcirc	0
- [length,	83	65	49	31.5	5
Upper bed breadth,	32	25	19	16	14
height,	13	12	14	10	9
Breadth quarter round, -	3	2. 5	2.5	0	0
Of the ogee-and fillet,	4	3.5	3	0	0
Length of the cavity, -	20	16	12	8	5.7
Trun, hole from fore end,	$3!$	20	15.5	$3 \cdot 3$	11. 2
Diam. \} of trun holes, $\{$	7.2	6.4	5.4	3.4	2. 4
Depth $\}$ of trun, holes, $\{$		6	5	3.2	2. 2

The diftance of the trunion holes is meafured from the quarter round, and not from the end of the bed. The joint of the two pieces of the upper bed, in the 13,10 , and 8 inch beds, are fo contrived as not to be directly over the joint of the pieces in the under bed.

ARTILIERY.

Names and number of irons in a 13,10, and 8 inch bed.
a. Cap fquares,
b. Eye bolts,
c. Joint bolts,

d. Under and upper bed bolts,
f. Dowel bars,
g. Rings with bolts,
h. Reverfe bar,
k. End rivetting plates,

1. Middle plate,
m. Rivetting bolts,
n. Square rivetting plates,
p. Traverfing bolts,
q. Keys, chains, and ftaples,

Names and number of irons in a royal and coeborn bed.
a. Cap fquares,
b. Eye bolts,
c. Joint bolts,
d. Rivetting bolt with ring,
f. Handles with ftarts,
g. Square rivetting plates,
h. Keys, chains with ftaples,

Dimenfions of beds for the three new mortars.

Diameter of the bore,	30	30	30
Slen	6 : 0	5: 10	4: 25
wer bed breadth, -	2 : 10	2 :	1:26
(thicknefs, -	0: 28	0: 25	- : 22.5
$\text { er bed }\left\{\begin{array}{l} \text { len } \\ \text { bre } \end{array}\right.$	5:28	$5: 8$	4:23
$\text { er bed }\left\{\begin{array}{l} \text { breadth, } \\ \text { thicknef } \end{array}\right.$	$\begin{array}{lll} 2 & : & 8 \\ 0 & : & 28 \end{array}$	$\begin{array}{lll} 2 & : & 0 \\ 0 & : & 25 \end{array}$	$1: 24$
Breadth of the ogee,	0: 6	- $\quad 25$	0: $\begin{array}{r}\text { a } \\ 0 \\ 0\end{array}$
Of quar. round and fillet,	$0: 6$	- : 5	$0: 4.5$
Diam. \} of trun, holes \{	$0: 14$	$0: 13$	$0: 12$
Depth \}	$0: 10$	$0: 9.5$	\bigcirc
Interval between them,	1 : 5	1: 5	I : 4
Their length,	0:15	14	0: 13

The firlt numbers in each column exprefs the diameters of the bore, and the fecond the parts of that diameter divided into 30 , as in the conftruction of mortars. The center line of the trunion hole paffes through the middle of the upper bed.
The dimenfions of the firft of thefe beds will hold nearly true in regard to the prefent mórtars. As to thofe ufed at prefent, there is no proportion between them; fome are larger and others fmaller than they fhould be; for it has been obferved, that when the royal and coehorn are fired, their beds kick about very much, which is a certain fign that they are too fmall. We have obferved before, that the mortars both here and in France are not conftructed by any rule; the fame is true in regard to their beds; and it is no wonder, fince St. Remy, the only author who has wrote a compleat treatife upon artillery, did no more than copy fuch memoirs as he received from the workmen, without pretending to reafon upon the fubject, and in all appearance was not qualified for it.

ARTILEERY.

General dimenfions of the iron work.

$\text { Cap fquare }\left\{\begin{array}{l} \text { breadth, - } \\ \text { thicknefs, } \end{array}\right.$	$\begin{array}{l:l} 0: & 12 \\ 0: & 3 \end{array}$	$\begin{aligned} & 0: 10 \\ & 0: 2 . \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 1: 9 \\ & 0: \\ & 0: \\ & 0 \end{aligned}\right.$
Fore end from the trunion hole,	0:16		
	a: 8	0: 7	0: 6
ye bolt head \{ breadth,	0: 7	0: 6	0:
40 thicknefs,	0: 3. 5	-: 3.5	$0:$
int bolt $\{$ diamerer, -	0:14	0 0 8. 5	O:
head 2 thicknefs, -	0: 3.5	0: 3.5	
Dift, from the trun. hole,	$0: 10.5$	$0: 9.5$	0 :
Traverfing bolt length, \rightarrow	0: 23	0:20	0 ;
Diameter of \{ head, -	$0: 4.5$	$0: 3.5$	0 -
bolt, Their diftance Sbelow	0: 3	0 :	0 :
eir diftance	0: 12	0: 11	0:10
		0: 29	$0: 24$ 1:24
Mid. plate $\left\{\begin{array}{l}\text { leng } \\ \text { hrea }\end{array}\right.$		2 2:	I: 24 0: $\quad 6$
-thicknefs,	0: 1. 6	0: 1. 5	$0:$
Bed bolt $\{$ diameter,	0: 3	0: 2.5	
Bed bolt \{ length,	2:10		1:26
Ring \{ diameter,	0:14	0: 12	$0: 19$
Ring \{ thicknefs,	0: 3	0: 2.5	0:2
Diameter of the rivetting bolts, - -	0: 3	0: 2.5	
Diameter of the ring rivetting bolts,	$0: 3 t$	0: 2.5	$0:$
Diftance from the ends of the plates,	0: 6	0: 5	
Dia. of the bed bolts burs	0: 6	0 :	0 :
Rivetting length,	1:	1:19	$1: 1$
g breadth,		0: 6	0 :
plates (thicknefs, -			
From the quarter round,	0: 8	0 :	0 :
Diameter of the traver-	. 35		
fing bolt plates, -	0: 11	0:10	$0: 10$

We fuppofe thefe mortars fo fixed in their beds as to le moveable, quire contrary to the prefent practice, Ind that they may be raifed from an angle of 10 legrees to any under 90 ; for which reafon the depth of the trunnion hote is not equal to its diameter, and the aviry in the bed is to be made in fuch a manner as to recive the wedges by which the mortar is raifed.

Dimenfions of fea mortar beds. Plate XV, XVI.

Thefe beds are placed upon very ftrong timber frames, fixed into the bomb ketch, to which the pintle is fixed fo as the bed may turn about it. The fore part of thefe beds is an arc of a circle defcribed from the fame center as the pintle hole. The plans, elevations, and different fections fhew in a diftinct manner the feveral parts of thefe beds.

ARTILLERY.

Iron work of thefe beds.
a. Cap fquares,
b. Eye bolts,
c. Loop bolts,
d. Traverfing bolts,
e. Middle plate,
f. Riveting plates,
g. Riveting bolts,
h. Crofs bed bolts,

1, Square riveting plates for ditto,
k. Down bed bolts,
m. Bed boliter plates, Keys, chains and ftaples, Nails to the bed boltter bed, Bed bolfter rings with loops,

Dimenfions of an eight incb bowitz carriago. Plate XVI
Length of the cheeks, Thicknefs, Height before,
Height at the $\left\{\begin{array}{l}\text { center, } \\ \text { trail, }\end{array}\right.$ Length of the trail,
Height of the plank
Height of the plank,
From the head to the center,
Trunion holes from the head

Breaft tranfom $\left\{\begin{array}{l}\text { length, } \\ \text { height, }\end{array}\right.$
thicknefs,
;
$\left\{\begin{array}{l}\text { length, } \\ \text { height, }\end{array}\right.$
Center tranfom height,
thicknefs,
Trail tranfom $\left\{\begin{array}{l}\text { length, } \\ \text { breadth, } \\ \text { thick nefs, }\end{array}\right.$

The iron work of thefe carriages is the fame as in dd carriages; but there are only four garnifh nails, ro of a fide, becaufe they are fo fhort as not to admit more. As to the wheels and axle-tree they are the me as in an 18 and 12 pounder's carriage.

PARTVI.

Of different forts of carriages ujed in the artillery.

Dimenfons of a Tumbrel. Plate XVIII.

Breadth
$\left\{\begin{array}{l}\text { behind } \\ \text { at the fore cut } \\ \text { in the middle } \\ \text { at the fore end }\end{array}\right.$

Height from the hind end to the fore cut Height at the fore end

Iron work of a_{4} iumbrcl.
A pair of wheels and axle-tree compleat. Axle-tree pins with rings and keys Fore cut pins Breech hooks Shaft rings Shaft pins with chains and ftaples Ridge chain with hook and loop Bail ftaples

ARTILLERT.

The common ufe of tumbrels is to carry the pioneers and miners' tools; but they ferve likewife to carry the money of the army.

Dimenfions of a powder cart. Plate XIX.

The wheels and axle-tree are the fame as in the tumbrel, except the height of the wheels is here 5.5 feet. Inches Sides with thafts, total length 180 From the hind $\{$ end to the crofs bar
From the hind $\{$ crofs bar to the fore crofs bar 88.5
From the fore crofs bar to the fore end - 77.5

Opening behind, and at the fore crofs bar 34
At $\left\{\begin{array}{l}\text { middle } \\ \text { before }\end{array} \quad=\begin{array}{l}35 \\ \end{array}\right.$
Two fhaft crofs bars $\left\{\begin{array}{l}\text { length } \\ \text { breadth } \\ \text { height }\end{array} \quad=\begin{array}{ll}34 \\ \text { 2 }\end{array} \quad 3\right.$
Under crofs bars $\left\{\begin{array}{l}\text { length } \\ \text { breadth } \\ \text { height }\end{array}-\quad 40\right.$
Side pieces $\left\{\begin{array}{l}\text { length } \\ \text { breadth } \\ \text { height }\end{array}\right.$ —— 100
The axle-tree paffes through the fide pieces
from the bottom
From the fhafts to the beginning of the roof 6
Height of the roof
Lids $\left\{\begin{array}{lll}\text { length } \\ \text { breadth } \\ \text { thicknefs }\end{array}\right] \quad \begin{array}{ll}10 \\ \sim & 10 \\ \text { Roof }\end{array}$

ARTILLERY.

Roof lids $\left\{\begin{array}{l}\text { length } \\ \text { breadth } \\ \text { thicknefs }\end{array}\right.$
The roof is covered with oil cloth to prevent damp nefs from coming to the powder, and each hot locke is divided into four parts by boards of an inch thich which enter about an inch into the fhafts. Eaclis thefe carts can flow four barrels of powder only.
a. Side bolts with fcrews
b. Crofs bolts with fingle keys
c. Double hinges for the fhor lids
d. Staples and keys with chains
e. Hinges for roof lids
f. Hafps, ftaples, and keys for ditto
g. Axle-tree pins with keys

Compleat irons for Chafts, wheels, and axle.tree.
Dimenfions of an ammunition waggon. Plate XX .

Fore wheels, height
Nave, length
Diameter $\left\{\begin{array}{l}\text { body } \\ \text { middle } \\ \text { linch }\end{array}\right.$
Fellows $\left\{\begin{array}{l}\text { breadth } \\ \text { height }\end{array}\right.$
Spokes $\left\{\begin{array}{l}\text { breadth } \\ \text { thickners }\end{array}\right.$
Hind wheels, height
Nave, length
Diameters $\left\{\begin{array}{l}\text { body } \\ \text { middle } \\ \text { linch }\end{array}\right.$

ARTILLERY

Hind guide

Fore guide
length to the axle-tree breadth at the head \{quare at the axle-tree opening at the axle-tree length to the axle-tree breadth before $\left\{\begin{array}{l}\text { breadth behind } \\ \text { thicknefs }\end{array}\right.$
Length of the ftraight part
Length from the axle-tree to the hind end Opening $\begin{aligned} & \text { to receive the } \\ & \text { near the axle } \\ & \text { behind }\end{aligned}$
Sweep bar $\begin{aligned} & \text { length } \\ & \text { breadth } \\ & \text { height }\end{aligned}$
Raves $\left\{\begin{array}{l}\text { length } \\ \text { breadth } \\ \text { height }\end{array}\right.$
Flate ftaves $\left\{\begin{array}{l}\text { length } \\ \text { breadth } \\ \text { thicknefs }\end{array}\right.$
Shafts length
Length of the ftraight part Breadth $\left\{\begin{array}{l}\text { behind } \\ \text { at the fore fhaft bar } \\ \text { before }\end{array}\right.$
Thicknefs before
Opening $\begin{aligned} & \text { at the fhaft bolt } \\ & \text { at the fore fhaft bar } \\ & \text { in the middle } \\ & \text { before }\end{aligned}$
Shaft bars $\begin{aligned} & \text { breadth } \\ & \text { thicknefs }\end{aligned}$
Tong $\begin{aligned} & \text { length } \\ & \text { breadth } \\ & \text { thicknefs }\end{aligned}$

ARTILLERY.

The fommers go 10 inches beyond the fore axle-tree, find 38 beyond the hind.

Iron work of an ammunition waggon.

Irons compleat for fhafts, axle-trees, wheels, dowledges excepted.
This waggon ferves likewife to carry bread, it being ined round in the infide with bafket work.

Dimenfions of a block carriage. Plate XXI.

ARTILLERY.

ARTILLERY.

Iron work of a block carriage.
lons compleat for wheels, axle-tree, and Thafts: Iron bar to faften the hind axle-tree to the fore

Bolts to fix this bar to the axle-trees.
Bolfter bolts.
Hooks faftened to the fide pieces with two bolts burs.
Bar to faften the fide pieces in the middle.
Staples for fhafts, and two iron bands with loops. Loops, one faftened to the rider, and the other to bind bollter.

The ufe of this carriage is to carry guns in the field, th are too heavy to be tranfported upon their own jages, as likewife mortars and their beds.

K 3
Dimenfions

ARTILIERY.

Dimenfions of a fing waggon. Plate XXII,

Interval between the centers of the axle-trees Fore wheel, height Nave, length

Spokes $\left\{\begin{array}{l}\text { breadth } \\ \text { thicknefs }\end{array}\right.$
Hind wheel height
Nave, length

Fellows $\left\{\begin{array}{l}\text { breadth } \\ \text { height }\end{array}\right.$
Spokes $\left\{\begin{array}{l}\text { breadth } \\ \text { thicknef }\end{array}\right.$
.Fore axle-tree, length

- Slength

Body \{breadth (height
Arms, length
Diameter $\left\{\begin{array}{l}\text { body } \\ \text { linch }\end{array}\right.$
Hind axle-tree length,
Body $\{$
$\left\{\begin{array}{l}\text { length } \\ \text { breadt }\end{array}\right.$
he
height

Iron work of a Jing waggon.
${ }^{2}$ Cap fquares.
\&Eye bolts.
${ }_{2}$ Trunion plates.
2 Beam hooks.
i lron to faften the tooth wheel.
Rack work with pland and handle.
An iron bar to ftop the jack.
8 Bolts with fcrews to faften the cheeks to the fide pieces.
2 Hind axle-tree ftays with bolts.
K_{4} -
A crofs

A crois bar to faften the fide pieces together. 4 Hooks faftened to the fide pieces with bolts and burs.

4 Bolfter bolts with rings and keys.
Pintle with band and wahher.
4 Boifter hoops.
Wheels and fhafts compleat.
The ufe of this carriage is to carry mortars or heary guns from one part of a place to another at a fmall diftance.

Dimenfions of a fling cart. Plate XXIII;

Plan of a Truck-Carriage

ARTILLERY.

This cart ferves for the fame ufes as the former waggon, but chiefly to carry the guns from the water fide to the proof place, and from thence back again.

The iron work of this cart is the fame as before, as alfo of the wheels, axle-tree, and Thafts.

Dimenfions of a truck carriage. Plate XXIV.

 ARTILLERY.

The crofs piece fixed upon the fore ends of the fide pieces is 5 inches broad, 3 high before, and 1.5 behind

The crofs piece behind the fore bolfter under the fide pieces is ten inches broad, and 1.5 thick. The bollters are let into the fide pieces about half an inch. The iron worly is fo diftinctly feen in the plan and elevation of this carriage, that it would be needlefs to mention it.
The ufe of this carriage is to carry timber and other burthens from one place to another.

Dimenfions of a travelling forge. Plate XXV.
Wheels, diameter
Inches
Nave, length -

ARTILLERY.

139
Inches.
Diameters

Arms, length
Diameters $\left\{\begin{array}{l}\text { body } \\ \text { linch }\end{array}\right.$
Shafts with fides, total length
Length of the fhafts
Breadth $\left\{\begin{array}{l}\text { behind } \\ \text { middle } \\ \text { before }\end{array}\right.$

Height $\left\{\begin{array}{l}\text { behind } \\ \text { middle } \\ \text { before }\end{array} \quad-\quad \begin{array}{ll}\text { - } & 2.8 \\ \text { before } & 2.8\end{array}\right.$
Opening $\left\{\begin{array}{l}\text { middle } \\ \text { axle tre }\end{array}\right.$
Raves $\left\{\begin{array}{l}\text { length } \\ \text { breadth }\end{array}\right.$ height $-\quad-33$ Slength breadth thicknefs
Fore crofs bar $\left\{\begin{array}{l}\text { breadth } \\ \text { thicknefs }\end{array}\right.$ From the hind upright to the end
From the hind end to the axle-tree

- 40
- 55

ARTILLER•

EXPLANATION.

a. The bellows.
b. Place boarded up to put the tools in.
c. Iron plate for the fire place.
d. Wooden trough for water.
f. Iron plate to receive the cinders, and to lay the hammers and tongs upon.
g. Iron plate to prevent the flame fetting fire to the carriage.

This forge is very ill contrived : it fhould have four wheels, that it might ftand firm, and be eafier carried; the Frencb ufe fuch as this laft defcribed.

Since the firt impreffion of this work thefe forges have been made with four wheels : the fame has fince been done in regard to the pontoon carriage, where they now ufe limbers, which mend it in part, but not compleatly; for it ought to be a compleat four-wheel carriage, and not one with limbers.

Dimenfions of a pontoon carriage. Plate XXVI.

Wheels, diameter
Nave, length
Diameters $\left\{\begin{array}{l}\text { body } \\ \text { middle } \\ \text { linch }\end{array}\right.$
Fellows $\left\{\begin{array}{l}\text { breadth } \\ \text { height }\end{array}\right.$
Spokes $\left\{\begin{array}{l}\text { breadth } \\ \text { thicknefs }\end{array}\right.$
Axle.tree, length
Body $\left\{\begin{array}{l}\text { length } \\ \text { breadth }\end{array}\right.$
height
Arms, length

The crofs bar next to the axle tree is of the fame dimenfions as the laft, and 24 inches diftant from the axle. tree.
The fhafts flip through the axle-tree, and are pinned behind, fo that they may be taken out when the carriage is to be put into the ftorehoufe; for which reafon they are made higher before, fo as to afford a fhoulder againit , the axle-tree.

Dimenfions of a pontoon.

Total length of the pointoon length of the bottom

Feet. Inch.

- $21: 0$

Width

ARTILLERY.

Width above and below at the outfide Height of the fides
Width within $\left\{\begin{array}{l}\text { above } \\ \text { at the bottom }\end{array}\right.$
Depth wtthin
Width of $\left\{\begin{array}{l}\text { three long bars underneath }\end{array}\right.$

Breadth of the $\left\{\begin{array}{l}\text { upper ones } \\ \text { crofs bars }\end{array}\right.$
Diftant from each other
Length of the timbers laid acrofs Breadth and height of ditto

There are four of there timbers for each pontoon, and as they lay acrofs over two pontoons, there are 5 placed at the fide of each other, the planks laid over themane an inch and a quäfter thick, and 11.5 feet long. Therg are likewife two long narrow boards laid on each fide of the bridge over the ends of the crof's ones, and fattenes to them with wooden bohts, to keep the carriages from running off. The XXVIth plate fhews the plan of fie pontoon, one part of which is left open at the botiom, to thew the wooden work; both out and inflides are covered with the frongeft tin plates ; the ousfide bottom is of the fame breadth as the pontoon is at the top, the fides inchuded, but the infide bottom is lefs broad, 6 that there is a hollow between the infide and outride, divided into apartments by the fide pieces, in order that if a hole fhould be made in the outfide by a fhot ot arcident, the infide might not be filled, and the poo. toon rendered lefs boyante.
The French cover the outfide of their pontoons with frong copper plates, and ufe no lining within, which, in my opinion, is preferable to our method, becuve copper is much ftronger than tin, and is not damaged by ruft; and a ftump of a tree or any thing that make a hole in ours will not be able to hurt theirs;

ARTILLERY.

bince we have copper of our own, I cannot conceive the raton why we do not follow their method.
The pontoon carriage is as ill contrived as poffible, for its length is greater than that of any waggon, and jet it is fupported by two wheels only; they have fince added a limber to it. The great ftrefs that lies on the maft horfe, would, one would think, be more than he can fupport, efpecially in going down hill; and I have been informed, that twenty men are fcarcely fufficient to affilt him; and in going up hill the men are obliged to fupport the carriage behind, for fear the weight fhould overbalance that of the horfe. This being fufficiently experienced in the laft war, it is furprifing that no artillery officer or artitt have not contrived a more convenient carriage. The moft obvious would be to have a limber to it, fuch as the field carriages have; this the French have to theirs, but inftead of making it with a high bolfter as ufual, I would make the wheels higher, and no bolfter at all, or only as high us the naves, fo that the pontoon might lie as low as polible: by this means the carriage would go with more eafe, and the fhaft horle draw as free as any of the others. To make ufe of two wheel carriages in travelling a great way, and through bad roads, is comtrary to fenie and reafon; becaule the whole weight laying upon two wheels mult needs make them fink more in the ground than thofe of a four wheel carriage, where but half the weight is fupported by two : "it is true that carts may be ufeful in a town at home, where they go upon pavement, and they are befides cheaper ; but that is no reafon they fhould be ufed abroad, for which, I dare fay, they were not intended.

Of the gin. Plate XXVII.

The ufe of this machine is to mount cannons upon their carriages, or to difmount them: alfo to heave mortars on or from their beds. It confilts of three

144

 ARTILLERY:round poles of about 12 or 13 feet long, whore diametets at the lower end are about four inches, five juft belor the roller, befides the cheeks that are added to them in that place, and about 3 or 3.5 inches above.

The roller is $7 \frac{3}{4}$ inches in diameter, and fix feet long; 20 inches are left fquare at each end for the holes made in them to receive the hand-fpikes, by which the roller is turned; the middle part is made round to wind the cable upon; the two poles, which fupport the roller, are faftened together by two iron bars, the one about 28 inches below the roller, and the other as much above it. Thefe bars are fixed with one end to one of the poles by means of a bolt, and with the other end to the other pole with a bolt and key, fo as to be taken out, in order that when the gin is to be carried abroad, the poles may lay clofe together upon the waggon; fome. times wooden bars are ufed inftead of thefe iron ones, which coft lefs, and anfwer the purpofe as well. There are two iron batids and two iron bolts to faften each cheek to the poles, and likewife iron plates round the poles where the iron or wooden bars are fixed. The poles are hooped at each end, and thofe above have ftraps, through which the iron bolt paffes. This bolt keeps the upper ends together, as likewife ferves to fupport the iron to which the windlefs is hooked: this windlefs contains two brafs pullies, about which the cable goes, which is fixed to the dolphins of the gun or mortar with another windlefs, containing two brals pullies likewife.

The firft figure fhews the form of the gin, as likewife the dimenfions of the different parts, with all the iron work; therefore it would be needlefs to fay any more of its conftruction. It muft be obferved, that when it is to be ufed, it is laid flat on the ground, the lower end of the fingle pole extends the contrary way, in order to faften the upper windlefs after the cable has been turned round them; after this the upper end is

ARTILLERY.

frifed gradually till the three poles ftand nearly at equal diftances.
The French gins differ from ours; viz. the two. legs, which fupport the roller, are faftened together by three wooden bars, nearly at equal diftances ; the third leg is not fixed to the others, but enters into a notch or morfife above, fo as not to nlip when it is ufed; the upper windlefs is fixed to the two legs by means of an iron bolt, fo that when they want to ufe the gin, a man gets up by means of the bars, and paffes the end of the cable round the pullies. This I heard objected againft, faýing, that if the gun is mounted near an enemy, it would be dangerous; but as that gin is as eafily raifed as ours, hey need not climb up, but when they can do it with. afety.

Of Petards. Plăte XXVII.

The Frencb petards are made in the form of a fruftum of a cone, with the vent in the leffer bafe; in England they are made nearly in the fame manner, only fome re found towards the fmalleft bafe. The fecond figure bews the fection of one as they are made here; it is 8.5 nches within at the bottom; the diameter at the beginning of the round part is 6 , and diftant from the ower bafe 9 inches ; the circular part is defcribed from he point where the perpendicular to the fides meets the middle line or axis ; the thicknefs of metal is 1.6 inches ; here is a brim at the bottom that projects the metal by mo inches, and is one thick, in which are fix holes of alf an inch diameter, which ferve for fcrews to faften he petard on a board in a firm manner; there is a cavity tithin at the bottom half an inch deep, and as much in kight, to fix a board, to keep the charge in the petard ffore it is fixed to the board or plank. There are likeife two handles of about three inches from the llat ring, ve inches long, feven tenths thick, and 1.8 from the pufide to the metal. Laftly, a hole of an inch dia-

Petards are made of various dimenfions, fome large and others fmaller than this; but it may be obferve that they fhould not be too heavy, otherwife it woul be troublefome to carry them to the gate or fally po where they are to be fixed; and if they are too littld the effect would not be fufficient, and therefore woul be ufelefs. In fhort, the largeft Ihould not weigh abov 70 pounds when loaded and fixed to its plank, and th leaft not lefs than 45 or 50 .

It will be eafy to make any other petard larger or lef in proportion to this, whofe diameter of the bafe given, by making all the other parts in the fame pr portion; thus, fuppofe the given diameter is 10 inche to find the height between the two bafes, fay, the di meter 8.5 is to the height 9 , as the diameter 10 is the height required, which will be 10.59 inches, and find the thicknefs of metal, fay, the diameter 8.5 is the thicknefs of metal I.6, as the diameter 10 is to t thicknefs required, which is 1.9 inches. In the fan manner the dimenfions of any other part may be found

The common way of loading the petard, and the be in my opinion, is, to fill it gradually with powder, at every two or three inches thick, to put a wooden mou into the petard, which being beat upon with a mall fo as to prefs the powder as clofe as poffible, witho bruifing the grains, and when it is quite full, the boa is put upon the powder, and over this a cloth with rof and bound round the brim with packthread to keep charge and board together, till the petard is frrewed the plank or board; then the part that exceeds the bri is cut off, and the other being preffed by the brim, P . vents any air coming to the powder.

The board to which the petard is fixed, is about t feet long, 18 or 20 inches broad, and 2.5 inches thic

ARTILLERY.

it has two iron bands on the back, placed crofs-ways, and a hook to hang it up againft the gate or door, by means of a ferew, when it is to be ufed.
Some moiften the powder with Spirits of wine, and dry it in the fun to make it ftronger, and then fprinkle every layer of powder of two inches thick with mercury, upon which they lay powder again, and prefs it down, then fprinkle it again with mercury, and continue fo till the petard is filled; but in my opinion good powder alone, well preffed down, is fufficient to produce the defired effect.
Petards have been much out of ufe fince King Wilhiam's wars, when Mr. Feuquier forced open many Pmall towns in Germany by their means; but the danger that attends it, has deterred officers and partizans from undertaking fuch enterprizes. Nor do I find any other nation but the Frenc b have ufed them, and even they yid not ufe them in the late wars.

P A R T VII.

The praciice of artillery at bome in time of peace, and its fervice in time of war.

HA VIN G given in the former part of this work the conftructions of the feveral pieces of artillery now in ufe, as likewife thofe of their carriages, in the moft concife and eafy manner we could, we intend to give here a defcription of what is practifed at home in time of peace, in order to inftruct the gentlemen cadets and private men in what they have to do upon the different occafions that may happen in time of war ; and then we fhall defcribe the different operations in the field and in a fiege, taking the liberty of making obfervations wherever we think the prefent practice may be improved;

$$
\text { L. } 2 \text { not }
$$

148 ARTILLERY.

not with any view of prefrribing rules of my oma making, but only to fet before the judicious reader luct things as may poffibly be of fervice to thofe young gentlemen, who have not had an opportunity of learning them in real fervice; for we do not prefume to offec thefe fentiments to thofe experienced officers of arillery whofe conduct and courage in the late war, fo well known to every military gentleman, exempts them from all furpicion of being deficient in any part of their duty

The practice at bome.

In the fpring, fo foon as the weather permits, tho exercife of the great guns begins, with an intention to Shew the gentlemen cadets and private men the manner of laying, loading, and firing the guns, at various diftances from the but or mark; and as the line of direction is not marked upon the guns, they have a fmall inftrument called a perpendicular, to find the center line or two points, one at the breech, and the other at the muzzle, which are marked with chalk, and whereby the piece is directed to the target; this being done, quadrant is introduced into the mouth, in order to give it a proper elevation, which at firft is gueffed at, according to the diftance the target is from the piece. When the piece has been fired, it is sponged, to clear it from any duft or fparks of fire that might remain in it, i and loaded: then the center line is found, as before; and if the fhot went too high or too low, the elevation is altered accordingly. This way of firing continues morning and evening for a month or fix weeks, more or lefs, according as there are a greater or lefs number of recruits. In the mean time, others are fhewn the motion of quick firing with field pieces.

REMARKS.

No gun is ever turned fo true, that the outfide correfonds exactly with the infide ; becaufe, if the bluntnefs of the tools and the heavinefs of the work is rightly confidered, it will be found morally impoffible that it hould; and the manner of laying pieces, or finding the line of direction, by an inftrument applied on the outfide, can be but very dubious and uncertain; it alfo mifguides the gunner; for when the perpendicular is not always placed exactly in the fame manner, it will give different lines of directions, whereby he is not able to judge when the fhot does not hit the mark, whether it is owing to his want of fkill, or to the falfe direction; and confequently is never certain whether he underftands lis bufinefs or not. I fhould imagine, that if the line of direction was marked, as was formerly the cuftom, with a flit or cavity at the breech, and a button at the muzzle, it would be much better; for though this line thould not exactly anfwer the direction of the bore, yet mhen the gunner has once found out its defect, he will eafly know how to rectify it : this 1 have feen in a piece formerly in France, which, when directed at the mark, went a great deal to the left; but the gunners after the frit fhot, hit the mark with it as well as with any other.
It is true, that an objection is made againft this fixed line; for it is faid that the platforms are never laid fo exactly level, but that one wheel will always be higher than the other; and in that cafe the line of direction muft be falfe. But as I never have feen a platform made without a mafon's level, and this is, as far as I know, an univerfal cuftom, I cannot fee any foundation for this objection; but let us fuppofe that one wheel was a trifle higher than the other, this would caufe very little error in the direction, which however the gunner would rectify the very next fhot: but though the platform fhould be level, it is faid the wheels do not always

L 3
ftand

159

 ARTILEERT.ftand exactly in the fame place, whereby the line of direstion is changed every time; this the gunners always take care of, by marking the fituation of the wheels and the hind part of the carriage with chalk on the plat. form. Therefore, fince the laying a piece with the ling of direction upon it, is more expeditious, and at the fame time more certain, it appears to be preferable t the common practice.

As the quadrant is introduced into the mouth of th piece, merely to know its elevation, and when the hoo goes either higher or lower than the mark, it is lowere or raifed by guefs only, without having any rule to g by, the ufe of that inftrument can be of no advantag in practice; on the contrary, it prevents the gunne from learning to judge by the eye, what elevation th piece fhould have according to its diftance from th object, which he fhould be able to do when he coma to real action; for which reafon it ought to be rejected as well as the perpendicular, whether a line of diredion is marked on the piece or not.

As the intention of the exercife in time of peace, to render the young artilleritt fkilful in all the differea branches of his bufinefs, I think, that if fafcine battene were frequently raifed, and platforms laid, that the may know how to do it in time of war, and at the fam time accuftom the men to fire through embrafures, would conduce very much to their perfection : for id manner the exercife is carried on at prefent upon a ftom platform, without any declivity, and without breay work, can give no true idea of the firing in a fiege; moft it can do is to reprefent a taint notion of firing a battle, where no battery or platform is made, exar in fome cafes where a poft is to be defended. I kno an excufe is made, that it is the duty of the engineer and not that of the artillery officers to make the battefiy and they have hitherto made them accordingly, as as I know : yet as this cuftom is grounded upon vo erroneous principles, as we fhall prove, it ought to
abolifhed. For how feldom does it hapyen that an engineer in this country has an opportunity to make a battery ? and when he has, how thall he know whether the embrafures are rightly made, or what declivity the platform fhould have, except he is well acquainted with the artillery, or is inftructed by the officers of artillery? It may be faid, he ought to be acquainted with what has been done by former engineers; but as the length and weight of pieces is changed almoft every day, and of courfe the making the embrafures and platforms mutt change likewife, it is impofible he fhould know how to make a battery in a proper manner, unlefs he was ordered to make experiments every time that pieces are changed, which is never done. Whereas, on the contrary, the officers of artillery are on the fpot, and, by firing thefe guns, have all the opportunity they can filh to determine thefe things; and to fhew the neceffity of it, we fhall give an inftance which makes it evident: ormerly, when a 24 pounder weighed from 51 to 52 pundreds, and its length was io feet, the platforms were hen made 18 feet long, and 9 inches higher behind han before; and now we make 24 pounders, that weigh put 17 hundreds, and whofe lengths are 5.5 feet; and sit may happen that thefe pieces are ufed upon a batery, how fhould an engineer be able to raife one properly ? and if he makes it as cultomary, the guns will un off their platforms every time, by which the fervice nill be retarded, and who is to be blamed ? not the ngineer, as I conceive, fince he had no opportunity to y thefe pieces before-hand. Again, the diameter of he wheels for heavy gun carriages is 5^{8} inches, and hat of the light pieces 50 only; fo that the height of he embrafures muft be made lefs for the latter than for he former. The diftance of the battery from the obect depends on the range of the pieces; and as the ght carry not fo far as the heavy, by reafon that their harges are lefs, a battery for the light pieces mult be carer the object, than that for the heavy. And fince
no one can be a better judge than the artillery officers, who daily practife them, they are therefore the properett to direct the making of batteries.

As the word point blank is often mifundertood, we fhall endeavour to define it here according to the general and proper acceptation; which is, fuppofe a piece ftood upon a level plain, and laid level, then the diftance between the piece and the point where the fhot touches the ground firft, is called the point blank range of that piece; but as the fame piece ranges more or lefs, ac. cording to a greater or lefs charge, the point blank range is to be underftood to be that, when the piece is loaded with that charge, which is ufed commonly in action. It is therefore neceffary that the ranges of all piece fhould be known, fince the gunner judges from thence what elevation he is to give to his pieces, when he is either farther from or nearer to the object to be firedut and which he can do pretty pearly by fight, efpecially if he has practifed it often.

Ricochet firing is likewife neceflary to be practifed that is, the pieces are elevated from three to fix degrees and loaded with a fmall charge, in order that the ball may be bound and roll along the infide of the parapet for which reafon a front of a polygon fhould be made to fhew the gunners clearly the object of thefe batteries and to try and find the charges for various diftances but as no work of this kind has hitherto been mad (though according to the inftructions of the academ, there fhould) piquets or ftakes might be placed at pro per diftances, to reprefent the traverfes or the angleso the front of the polygon, which will anfwer the purpof nearly as well as if there were real works. As thi method of firing faves a great deal of powder, and more dangerous than the ufual way, as will be fhem hereafter, it ought by all means to be practifed in tim of peace.

ARTILLERY.

Mortar practice.

After the gun exercife is over, that of mortar begins, and fometimes they are carried on both together; the oflual manner is thus : a line of 12 or 1500 yards is traced in an open fpot of ground, from the place where the mortars ftand, and a flag fixed on the end; this being done, the ground where the mortars are to be placed is prepared and levelled with fome fand, fo as they may ftand at an elevation of 45 degrees; then they are loaded with a fmall quantity of powder at firft, but increafed afterwards, by an ounce every time, till it is loaded with a full charge: the times of the flights of the fhells are obferved; to determine the length of the fules.
The intention of this practice is, when a mortar battery is raifed in a fiege, to know what quantity of powder is required to throw the fhells into the works at a given diftance, and to cut the fufes of a jult length, that the fhell may burft as foon as it touches the ground. This is certainly a very good method, with regard to its intention; but in a fiege fhells are not or never fhould be thrown with an angle of 45 degrees, but in one fingle cafe only, which fearcely ever happens, that is, when the battery is fo far off that they cannot otherwife reach the works. For when fhells are thrown from the trenches into the works of a fortification, or from the town into the trenches, they fhould have as little elevation as pofible, in order to roll along, and not bury themfelves, whereby the damage they do, and the terror they caufe to the troops, is much greater than if they fink into the ground. On the contrary, when fhells are thrown upon magazines, or any other buildings, with an intention to deftroy them, the mortars fhould be elevated as bigh as poffible, that the flells may acquire a greater force in their fall.

ARTILLERY.

It is faid that howitzes are made to throw fhells with a fmall angle of elevation, and therefore it is not neceffary to ufe mortars for that purpofe, and that an angle of 45 degrees is fufficient in a bombardment; which may likewife be done with lefs powder than at any other elevation.

Granting this, I fhould be glad to know the ufe of mortars, at leaft of the fmall; fince no lefs than 13 inch are or ought to be ufed in throwing fhells upon magazines, and even thofe are not always fufficient to break through the arches of powder magazines; therefore it would be needlefs to carry any fmaller to the field, But the true reafon is, our mortars are immoveably fixed to their beds, and the cuftom has preyailed for fome years, to lafh them trongly with ropes to their beds, which could not be done if they were moveable, and the belief that without this lafhing they would kick up before, and fall backwards when fired. But to convince the reader of the infufficiency of this reafon, he muft know that the French never lafh their mortars, though they are much fhorter and lighter than ours, and often fire them with an angle of 75 degrees, without their ever falling back, as we abfurdly imagine, This is demonitrable without having recourfe to ang experiments; for we have fhewn that confined powder aets every where alike when fired, but being refifted in pieces of artillery on the fides by the ftrength of the metal, the fhot is driven forward, and acts likewife on the oppofite part fo as to make the piece recoil. Now as action and re-action are always equal and oppofite, whilft the action on the upper part of the chamber endeavours to raife the mortar, that on the under fide eppofite to the other acts with the fame force downwards; and therefore thefe two forces being equal, and in oppofite directions, they deftroy each other. Hence, there is not the leaft occafion to lath the mortars to their beds, nor fix them immoveable, as hitherto has been the cuftom.
N. B. What we have faid here relates to land mortars only; for thofe on board bomb-veffels are fo heavy, and the motion of the flip fo variabie, that it would be needlefs to attempt any other method than what is used.
In firing mortars no wadding is ufed here upon the powder, in order that the blatt of the powder in the chamber may light the fufe of the fhell by means of a quick match; on the contrary, the French put a wad upon the powider, and fill the reft of the chamber with earth; and when the mortar is fired, one gunner fires the fufe, while another fires the powder in the chamber. But as the fufe might by chance take fire before the powder, the thell might burrt in the mortar, fpoil it, and endanger the lives of the men, and as the earth can make but very little refiftance, the powder acts nearly with the fame force as if there was none; therefore this method is very defective, and much inferior to ours.
Inftead of loading mortars with loofe powder, as is the cuftom, I would chufe to ufe cartridges as well as in guns, for the following reafons; becaufe when the powder lies loofe, its furface fpreads near horizontally, fo that the lower part lies nearer the fhell than the upper, which makes its effect much lefs than it would be were it confined; neither can the chamber be filled with as much powder as it can hold, for which reafon they are always made larger than they fhould be, whereby the effect is never fo great as it would be otherwife; thus, in our thirteen inch mortars the chamber holds nine pounds of powder, whereas it is well known that fix pounds is the moft that is wanted; and fince loofe powder never acts with that force it does when confined, it is evident, that the firing mortars with loofe powder is not fo advantageous as when they are fired with cartridges. Another advantage this manner has over the other is, that when the chamber is not filled, the cartridge may be left clofe to the fhell, and the empty fpace

154

 ARTILLERY.It is faid that howitzes are made to throw fhells with a fmall angle of elevation, and therefore it is not neceffary to ufe mortars for that purpofe, and that an angle of 45 degrees is fufficient in a bombardment; which may likewife be done with lefs powder than at any other elevation.

Granting this, I thould be glad to know the ufe of mortars, at leaft of the fmall; fince no lefs than 13 inch are or ought to be ufed in throwing thells upon magazines, and even thofe are not always fufficient to break through the arches of powder magazines; therefore it would be needlefs to carry any fmaller to the field. But the true reafon is, our mortars are immoveably fixed to their beds, and the cuftom has preyailed for fome years, to lafh them trongly with ropes to their beds, which could not be done if they were moveable, and the belief that without this lafhing they would kick up before, and fall backwards when fired. But to convince the reader of the infufficiency of this reafon, he muft know that the French never lafh their mortars, though they are much fhorter and lighter than ours, and often fire them with an angle of 75 degrees, without their ever falling back, as we abfurdly imagine, This is demonitrable without having recourfe to any experiments; for we have fhewn that confined powdet aets every where alike when fired, but being refifted in pieces of artillery on the fides by the ftrength of the metal, the fhot is driven forward, and acts likewife on the oppofite part fo as to make the piece recoil. Now as action and re-action are always equal and oppofite, whilft the action on the upper part of the chamber endeavours to raife the mortar, that on the under fide eppofite to the other acts with the fame force downwards; and therefore thefe two forces being equal, and in oppofite directions, they deftroy each other. Hence, there is not the leaft occafion to lafh the mortars to their beds, nor fix them immoveable, as hitherto has been the cuftom.
N. B. What we have faid here relates to land mortars only; for thole on board bomb-veffels are fo heavy, and the motion of the fhip fo variabie, that it would be needtefs to attempt any other method than what is used.
In fring mortars no wadding is ufed here upon the powder, in order that the blatt of the powder in the chamber may light the fufe of the fhell by means of a quick match; on the contrary, the French put a wad upon the powider, and fill the reft of the chamber with earth; and when the mortar is fired, one gunner fires the fufe, while another fires the powder in the chamber. But as the fufe might by chance take fire before the powder, the thell might burft in the mortar, fpoil it, and endanger the lives of the men, and as the earth can make but very little refiftance, the powder acts nearly with the fame force as if there was none; therefore this method is very defective, and much inferior to ours.
Inftead of loading mortars with loofe powder, as is the cuftom, I would chufe to ufe cartridges as well as in guns, for the following reafons; becaufe when the powder lies loofe, its furface fpreads near horizontally, fo that the lower part lies nearer the fhell than the upper, which makes its effect much lefs than it would be were it confined; neither can the chamber be filled with as much powder as it can hold, for which reafon they are always made larger than they fhould be, whereby the effect is never fo great as it would be otherwife; thus, in our thirteen inch mortars the chamber holds nine pounds of powder, whereas it is well known that fix pounds is the moft that is wanted; and fince loofe powder never acts with that force it does when confined, it is evident, that the firing mortars with loofe powder is not fo advantageous as when they are fired with cartridges. Another advantage this manner has over the other is, that when the chamber is not filled, the cartridge may be left clofe to the fhell, and the empty face

156 ARTILLERY.

at the bottom of the chamber, whereby the powder ats with more violence than if the powder was at the bot. tom of the chamber, and the empty fpace near the Shell; this colonel Defaguliers and myfelf tried many times with half the charge, and the range was always nearly double in the firft cafe than in the fecond. When the powder is loofe in the chamber, if a piece of writing paper be put over it to keep it up, it will make a greater range than otherwife : all this confirms, that with lefs powder a greater effect may be produced, than with a greater quantity, which ought not to be neglected.

We have fhewn the inconveniency of fixing mortars to their beds fo as not to be moved, becaufe they never will produce the effect that might be expected; we fhall add another reafon, which is, that when the charge is the fame, and the elevation varies, the rules of projectiles may be ufed, which, though deduced from the theory of bodies moving in a non-refifting medium, and the refiftance of air is confiderable in fwift motion, yet they will give the ranges very near under 1200 yards; for which reafon we fhall fet them down here, leaving it to practitioners to try them, or let them alone, as they think proper.

Piractical rules for borizontal ranges.
I. The range of a body projected with an angle of 15 degrees, is balf the range of that body, if projected with the fame force with an angle of 45 degrees.
II. The range of a body projected with an angle of 45 degrees, is equal to the Square of the time of its fligbt, Cx . prefled in feconds multiplied by 16.1 feet.
III. If a body be projected with the Same force, but with different angles of elevations, the borizontal ranges are as the fines of angles double thofe of the elevations refpeaively.

ARTILLERY.

1V. The times of the fligbts of the Same body, projectied with the fame force, with different degree of elevations, are to each otber as the fines of the angles of elevations.

Thefe rules are demonftrated in my Elements of Mathematics, Book the fourth, Section the third.

> Example I.

Let a body projecied with an angle of 45 degrees of elevation be 12 Jeconds in its fligbt, what is the borizontal range ?

The fquare of 12 is 144 , which multiplied by 16.1 ; gives 2318.4 feet, or 772.8 yards, by rule the fecond, for the range required.

Example II;

If the range of a body projected with an angle of 25 de: grees be 200 yards, what will be the range if the body is projecited with the fame force under an angle of 3° degrees?

The fine of 50 degrees, double of 25 , is 76604 , and the fine of 60 , double of 30 , is 86602 ; therefore 76604: $86602:: 200: 226$, equal to the range required by the third rule.

Example III.

If the range of a body projecied with an angle of 20 degrees be 200 yards, what muft the angle of elevation be to project the body with the fame force at a diftance of 300 yards?

The fine of 40 degrees, double of 20 , is 64278 ; whence $200: 300:: 64278: 96417$, equal to the fine of the angle double the required one: this fine anfwer'sis 37 degrees $38: 6$ ninutes, for the angle fought.

The borizontal range of a body projested twitb an angle of 45 degrees being 1000 yards, to find the time of its fight?

Then fay, as 46 . I feet is to the given diftance 3000 in feet, fo is unity to the fquare of the time required, which is 186 , whofe fquare root 13.6 feconds will be, the time required.

> ExAMPLE V.

If the time of fligbt of a body projected with an angl of 45 degrees is 20 feconds, wbat will be the time of toe fame body projected with the fame force with an angle of 35 degrees?

As the fine of 45 degrees is 70710 , that of 35 He . grees 57357 ; whence $70710: 57357:: 20: 16$, tqual to the time required.

This laft example fhews how to compute the time of the flight of a fhell when the range can be meafured, and from thence the length of the fufes; as likewife fea, where the diftance is known from the mortarto the object, the time being computed when a fhell is thrown, it may be known whether it fell fhort, or goes beyond the object, according as the time obferved d the flight is lefis or greater than the time compured

Thefe are nearly all the different exercifes of the artillery in time of peace, except that the men are fiem fometimes how to take the guns off their carriages, and to put them on ; whence the reader may fee, that the artillery art is chiefly reduced to fire guns and mortars but as thefe exercifes are foon over, and a great deald
tim
the
anc
po
of
are
pri
of
to:
of
in
tim
the
no
wee
to
kno
to
nec
fave
to a
offic
fho
whe
whe
to n
or a
rejo
how
mal
him
I
kno
equ
and
fieg
ARTILLERY.
time is fient in doing very little, which generally makes the private men. get idling about, fpend their money, and do mifchief for want of other employment, I propofe the following fcheme to employ them for the,good of the public, without any hard/hip to them.
When all the field exercifes and that of fmall arms are over, and nothing to be done, a detachment of private men, commanded by young officers, confilting of about a fixth part of the garrifon, fhould be ordered to attend the laboratory, to make and prepare all kind of military ftores that are neceffary, during three hours in the morning; and three in the afternoon; at other times they fhould be employed to make fireworks for the ufe of artillery, and for rejoicings; this would be no hardfhip upon the foldiers to be employed once a week for fix hours, the officers would have lefs trouble to keep them clean and fober; they would likewife know how to prepare thofe ftores when they are wanted to be fent abroad, where there is no laboratory, and yet neceffary to be had. Laftly, great expences would be faved to the public, without any hardfhip or detriment to any body.
This would alfo be a means to inftruct the young officers in that branch of their bufinefs, of which they fhould not be ignorant: for how often does it happen, when a detachment is fent to the Eaft or Wef-Indies, where having powder, fhells, and fhot, it is neceffary to make grape fhot, fill the fhells, and drive the fufes; or after having gained a victory, to make fireworks for rejoicing; now if an officer does not know to order how thefe things are to be done, what a figure muft he make before a-commander in chief, who requires it of him, and expects he fhould be able to do it !
I think it alfo neceffary that an artillery officer fhould know the names of every thing neceflary for a field equipage, efpecially of all the parts of a gun, a mortar, and their carriages; for if any accidents happen in a fiege, how can he fend word to the workmen, who are
generally

160

 ARTILLERY.generally in or near the park of artillery, of what is wanting ? for they, not knowing what is broke, mult come perhaps a mile to fee it, and go back again to fetch it; in the mean time the piece cannot be fired; whereby the fervice is retarded.

It appears alfo to be neceffary upon many occafions, that the officers fhould be acquainted with the principal conftructions of gun and mortar carriages ; for it may happen, that when they are fent upon an expedition to the Eaft or Weft-Indies, where either new carriages may be wanted, or old repaired, they may always find wood and iron; as likewife fmiths and carpenters in the country, but who not being acquainted with this kind of work, if he knows how to direct them, it will be both an advantage to him as well as to the fervice: it may be faid, that there are always workmen fent with thofe detachments by the board of ordnance, whofe duty it is to do thofe things; but if thofe artificers fhould die, which may happen, what muft be done then? if the officer does not know how to direct others, the con. fequence will be, that the fervice muft be retarded, and who will be blamed ?

- It is likewife very material, that an officer thould know the quantities of ftores and their kinds that are required upon any expedition. It is true that this detail is commonly made out at the Tower; but if by miftake any materal article fhould be omitted, when he comes to an action and wants it, the commanding officer would blame him, and not thofe that fent them.

The fervice of Artillery in a land engagement.

The pieces are generally placed upon fome rifing ground before, and at the fides of the firft line, where the enemy is fuppofed to make the greateft effort, or in fome village, garden, or near fome hollow way through which he can march; and as they are to advance or retreat, according as the army moves and the enemy

ARTILLERY

approaches, there is no time for raifing batteries, except ' ipot of ground is taken poffeffion of the night before, which is advantageous for covering either a wing or the ceater, and neceffarily to be kept and defended; the heavieft pieces fhould be placed there; and the others on the moft advantageous manner the ground will admit of: every time they are fired the men advance them to he fame place again; fo that when the guns are once pointed right, they continue fo all the time they remain in the fame place. Our prefent light pieces are wonderfully well adapted for this fervice, the men being ble to move them as they pleafe with very little trouble, and the fcrews ufed to keep them at the fame elevation re much more convenient than the coins which were wed before, becaufe they fly off every time the pieces re fired.
At firft the guns are fired with balls, but when the nemy comes near, they are then loaded with grape hot. In this cafe the charge fhould not be fo much as pefore, becaufe it has been found by experience, that when the charge is great, the fhots fpread too much, y frikiry againft each other, whereby many of them to no execution, which fhould be avoided if poffible. nmy opinion a fixth part of the weight of the fhot illl be fufficient upon this occafion. But when pieces re loaded with balls, one fourth, or perhaps one fifth iill be the proper charge, fince no more was ufed in our light pieces during the laft war.
It has been obferved by feveral artillery officers, that owitzes might be ufed in an engagement to very great dvantage, if they were placed in the flanks, fo as to re obliquely upon the enemy's line, or amongtt their orfe, when loaded with fmall charges, that the fhells pay roll and bound along, whereby a great diforder ould enfue among them; which being perceived, if hey are brikkly charged, might be the means of gaining e day. For it mult be obferved, that cannon thot afs fo fwift through the ranks, that men are killed and expecting them to burft every moment, the braveft amongtt them will hardly have the courage to wait for their coming near him.

When pieces are fired with cartridges, the bottoms will remain in them whatever care can be taken; they muft therefore be drawn from time to time, or elfe they will accumulate fo that the tube cannot reach the pow. der. The fhorteft way of doing this, is to fix a worm at the head of the fponge with a good fpring, fo as when it is prefied upon, it may fponge the bottom of the piece, and draw out the remaining bottom at the fame time; for all other methods propofed by fome artifts are infufficient. Another method I think migho likewife do, is to pierce the vent from behind the breech, in the manner the Saxon guns were, whereby the tubo cannot mifs to reach the powder, provided it is of a fufficient length : befides, the cartridge being pierced in the bottom, fome grains of powder may probably fall between the cartridge and the end of the bore, and io blow out the bottom with the reft.

It is to be obferved, that the powder carts fhould be near the batteries, not only to fupply them with powder, but likewife the troops near them, when that which they receive before the engagement is all fpent; becaule batteries are objects or marks of fuch a nature as to bo known at a great diftance, whereas, when the powder is placed any where elfe, the troops do not know where to find it if they are in want. But at prefent every bat talion has two field pieces to attend them, which I luppofe have powder carts along with them, that contain a fufficient quantity to fupply the battalions.

ARTILLERY．

The fervice of Artileery in an attack．

The firft batteries erected in an attack are generally placed about a hundred yards before the firft parallel spon a rifing ground，if there is any that lies conve－ piently，and as they commonly are made for ricochet fring，muft be at right angles to the faces produced of he works in the front attacked，and there being eight faces in the front，when there are ravelins and a covert－ way，fo there muft be eight batteries，each of four guns at leaft，befides fome mortars placed in the fame batteries．
When ricochet firing is ufed，the pieces are elevated from three to fix degrees，and no more；becaufe if the elevation is greater，the fhot will only drop into the work，without bounding from one place to another ； they are to be loaded with a fmall charge，and directed in fuch a manner as juft to go over the parapet，
Mr．Vauban fays，that half a pound of powder is fofficient for a 12 pounder in moft cafes；which is one twenty－fourth part of the ball＇s weight ：therefore where－ ever this firing can be practifed，it hould be done，fince it faves much powder，and the pieces will not be heated let them be fired ever fo much．The fame batteries will likewife ferve to difmount the befieged guns placed in the faces oppofite to them；but in that cafe the charge mult be one fourth，or one third of the fhot＇s weight． The chief engineer and the commander of artillery confult together how to place thefe batteries，and when the places are fixed upon，the pioneers are fet to．work， under the command of an artillery officer in the French fervice，where they have a particular number called commiffaries，who are not attached to the regiment of artillery，and when the ground is thrown up，the gun－ ners make the infide facings with fafcines themfelves， as likewife the embrafures，and lay the platforms ；for nobody can be a better judge how to do this work than

$$
\text { M } 2 \text { they, }
$$

164 ARTILLERY.
they, and therefore they ought to practife it in time o. peace, as we have obferved before.
The next batteries to be raifed are thofe for making breaches, and to deftroy the flanks : the firt are placed upon the glacis, within 18 or 20 feet of the covert way, directly oppofite to the faces in which they are to make breaches, and the others alfo upon the glacis at the fame diftance from the coveri-way, oppofite to the ranks. This diftance is left for the thicknefs of the breaft-work or parapet.

It has been cuftomary to charge the pieces with half the weight of the fhot; but experience has fhewn, that one third or lefs is fufficient ; for provided that the fhot juft enters the wall, the effect will be greater than when it penetrates a great way. The manner of making a breach is to fire at firft as low as poffible, and to direef the pieces fo as to hit in an horizontal line near each other; if they are fired together, and not one after another, the fhock will be the greater.

The reafon for battering fo low is, that if the wall is cut low in an horizontal line, the part above falls down all at once; whereas if the wall above is beat down ac firft, the rubbifh covers the lower part in fuch a manner, as not to be deftroyed afterwards, and without which the breach becomes impracticable. When the wall is once beat down, it will be advantageous to fire fhells into the earth, for each fhell will produce the fame effett as a little mine; whereas the fhot will only make a hole

- of its own bignefs, without any great effect. It has been found that the vents of battering pieces have been fo much fpoiled in a fiege, as to render the guns unferviceable: this may be prevented by firing with tubes, as in quick firing it has been found by experience that they preferve the vent, for we fired a fix pounder 300 rounds in 3 hours and 27 minutes, without widening the vent in the leaft; confequently this manner of firing faves great expence, fince the fame guns may ferve in

ARTILLERY.

many fieges, without having them recaft, as was the cafe heretofore.
The antients made ufe of much larger calibers for battering pieces than we do; they knew very well that the breach is fooner made with them; but they imagined that the greater the force was, the quicker the work was done; for which reafon they loaded their guns with as much powder as the fhot weighed; and as the ftrength of the guns was made in proportion to the effort they fotained, they became fo very heavy, as hardly to be managed; for which reafon none but 24 pounders are wied at prefent, whofe ftrength is made fo as to bear a charge of two thirds of the fhot's weight; and though experience has fhewn that one third was fufficient, yet heir weight has not been diminifhed.
This was the reafon that induced us to make the pattering pieces lighter, for we made the thicknefs of netal but three quarters of the fhot's diameter at the vent, inftead of a whole diameter, as in the prefent. And as the ftrength of a piece is in proportion to the hicknefs of metal, that of ours will be to that of the prefent pieces, as 3 to 4 ; and the forces being nearly sthe quantities of powder, ours will be acted upon but ith half the force of the old; and confequently their frength is more than fufficient upon all occafions.
Now as our new 42 pounder weighs $47: 1: 0$, and io feet long, and the old 24 pounder weighs about $1: 0: 0$, and is only 9.5 feet long, we conceive that or new piece is much preferable for making a breach othe old 24 pounder. For it enters farther into the mbrafures by fix inches, and of confequence does not eftroy them fo foon; it requires no more men to maage it, and no more horfes to draw it; and as it will poner make a breach, there can be no comparifon made etween their ufefulnefs. As to the charge, I would ever ufe more than ten pounds of powder, for the prces of fhots are in proportion to their weight multilied by the weight of the powder; whence a 42 poun-
der loaded with ten pounds of powder will produce force, which is to a 24 pounder loaded with the fame charge, as 42 to 24 , or as 7 to 4 . This is the particular excellency of large calibers, that they produce greater force with lefs powder in proportion ; and confequently they are much preferable in moft cafes. And they have another advantage, which is, when you firc at a diftance with a proportionable quantity of powder the refiftance of the air is reciprocally proportional to the diameters of the fhots nearly; thus the diametero a nine pound thot is 4 inches, that of a 49 pounde 7 nearly; and therefore the refiftance of the 9 pound is to the refiftance of the 49 pounds, as 7 is to 4 nearly Whence it appears, that the firft will meet with a te fiftance near double that of the fecond.

Conftruction of batteries.

To make a battery before the face of a vigilant enem ftrong and durable, and to ufe no more materials an workmen than are neceffary, is perhaps the moft in portant work in a fiege : though the enemy do no know their fituations, yet may guefs where they fhoul be, and prepares his fire accordingly; and fo foon as t hears the leatt noife of workmen, will do all he cant annoy them both by his fire and fallies; being fenfib that when they are once made they will deftroy all h defences, and difmount his guns; and when that effected, the approaches may be carried on without an other obftacle than the fire of fmall arms, againit whid the workmen may eafily cover themfelves.

To proceed with order, the quality and quantity the materials, as well as the number of workmen an their tools, muft be determined as exactly as the natul of the fubject will admit. From the known dimenfiod of a battery, the quantity of the materials may bed termined and their kind from their fituation. For th parapet or breaft-work is 48 or 20 feet thick, and 7 .

ARTILLERY.

of 8 feet high; each gun takes up 18 feet parapet, and each end about 10 : the embrafures are 3 feet from the ground, 2 feet wide within, and 15 or 16 without; fo that the merlons or part between the embrafures are 16 feet long on the infide, and 4.5 or 5 feet high.
The dimenfions of the fafcines are various, but the following are in my opinion the moft convenient in many refpects; their diameters fhould be 10 inches or circumference 31.5 , and their length 10.8 and 6 feet : becaufe one of 10 feet and one of 8 make the thicknefs of the parapet ; one of 10 and one of 6 the merlons; one of 10 the ends; and one of 10 and 8 the infide of the embrafures: laftly, 9 layers make up the height of the parapet. Another advantage of the above lengths is, that the ends of one layer will not be over thofe of the next above it, and they are made and carried with more eafe than thofe that are longer, fuch as the French generally ufe.
Hence a battery of two pieces will be 40 feet long, and requires two fafcines of to feet, one of 8 , and two of 6 for each layer from the ground to the embrafures, and four layers 8 of 10,4 of 8 , and 8 of 6 feet, which are required for that height; becaufe four layers make 40 inches in height, and the under one being funk about 4 inches into the ground, there remains 3 feet.
The diftance between the two embrafures being 16 feet, requires one of 10 feet, and one of 6 , and each end one of 10 , that is, three of 10 , and one of 6 for each layer; and if we take 6 layers, 18 of 10 , and 6 of 6 , which makes the parapet 8 feet high; though 5 layers will be fufficient on moft occafions, yet it is proper to have fome fpare fafcines.
As the embrafures are likewife to be fecured with fafcines, each layer requires one of 10 feet, and one of 8 ; fo that the fix layers require 6 of 10 , and 6 of 8 feet; and as two embrafures require four times that number, that is, 24 of 10 , and 24 of 8 ; to which muft

ARTILLERY.

be added one to lay over each embrafure of 6 feet long; to cover the gunner againft the plunging mufket fhot; which two added makes 24 of 10,24 of 8 , and 2 of 6 , for the number of fafcines required for the embrafures. The ends of the parapet, are likewife fupported with fafcines, one of 10 feet, and one of 8 : and the ten layers 10 of 10 , and 10 of 8 ; and both ends 20 of 10 , and 20 of 8 feet long.

So that a battery of two pieces requires 70 of 10,48 of 8 , and 16 of 6 in all. When a battery is enfiladed by fome of the outworks, they muft have flanks from 10 to 12 feet thick, and 18 long, which requires 10 fafcines of 10 feet, and 10 of 8 each flank; and when the foil is fandy, it is fcarcely poffible to keep up the earth on the outfide without falcines, at leaft from the berm to the embrafures; for which it requires 8 of 10 , 4 of 8 , and 8 of 6 , in any battery of two pieces.

Befides thefe battery fafcines others of a fmaller fizf, are required, which 1 fhall call bavins, to lay along the rope which traces the plan of the battery, and confines the earth till the other fafcines are laid and picketed; as likewife to cover the powder magazines: their diameter may be 5 inches only, and length 6 feet. Thefe magazines muft hold as much powder as is expended in a day; fuppofing a 24 pounder to fire 100 rounds in a day, and loaded with 8 pounds each time, requires 800 lb . or 8 barrels; and as a barrel is about 15 inches diameter, and 30 long, 3 bavins will cover one; and as they are placed one over another, 12 bavins will cover the powder of one 24 pounder.

As it is alfo neceffary to fupport the ends of the falcines in the front, the others being laid upon the bank of earth, and an upright poft when the magazine is large: they are fometimes covered with planks when they can be had.

The length of platforms are commonly 18 feet, 8 broad before, 15 or 16 behind; the planks a foot broad, and from 2 to 2.5 thick. The hurter to ftop the wheels

fror

 8 fee lay
ARTILLERY.

from damaging the fafcines is 5 by 6 inches fquare, and 8 feet long. There are five feepers to each platform to ${ }^{-}$ hay the planks upon, 3 by 4 inches fquare, and 18 feet long; each fleeper is faftened by pickets drove faft in the ground, two at each end, and two in the middle; and the laft plank by 4 to keep them clofe together: there requires then 34 pickets for each platform.
The fafcines muft be well bound, thofe of 6 feet by 3 bands, of 8 by 4 , and of 10 by 5 : the length of the pickets to pin down the fafcines mult be from 3 to 5 feet, the diameters of the heads from 2 to 3 inches, well fquared at the heads, and fharp at the points. There ate three required for a fafcine of 6 feet long, four for one of 8 , and five for one of 10 ; which makes 590 pickets in all for a battery of two pieces.
A foldier may make 12 battery fafcines a day with the pickets required, when proper wood is to be had conveniently : a horfeman may make 20 bavins a day, bound in two places only, becaufe they require very little care to make them neat; for it is the cavalry that generally make thefe kind of farcines.
Twelve foldiers will make a fufficient quantity of fafcines in a day for a battery of two pieces, and three horfemen a fufficient quantity of bavins at the fame time. Each man muft be provided with a hand-bill and two hatchets for the whole detachment to cut the branches from off the trees.
In the conftruction of a battery of two pieces, it requires io mallets to drive the pickets, 15 fpades, flovels, and pick-axes for digging, according to the nature of the ground. It has been found that 50 men are fufficient to make a battery of two pieces in one night, 70,90 for one of 4 or 6 pieces.
The following table contains the number of men, their tools and materials, to conftruct in one night batteries from 2 to 20 pieces of cannon, as nearly as we could compute them; but as it is convenient to have fome fafcines and pickets to fpare, and to repair the battery,

170

 ARTILLERY.battery, we fhall leave it to the engineer to make what allowance he pleafes, We have not inferted the number of fafcines and pickets required for the flanks; and if there are any, their number determined above mult be added. We have neither marked the number of men or materials for batteries of an uneven number of pieces, becaufe they may be eafily found, by taking half the fum of the next greater and lefs, to have the number that is wanted.

Ricocket batteries.

Formerly batteries were made at the opening of the trenches to protect the workmen, but fo foon as the firft parallel was made they became ufelefs; and as they are expenfive to make, and require much time and labour, this method has been rejected; and now none are made before the firft parallel is finifhed. Befides, the approaches are now made the firft night as far as the firft parallel, and the parallel itfelf fo far as to be finifhed and perfected the next day; and when that is done, the batteries are erected about 100 yards before them perpendicular to the faces produced, which they are to enfilade: when they are compleated, do remain till the fiege is finifhed. Thefe batteries ferve likewife to difmount the guns placed on the other faces nearly oppofite to them.

As the befieged will fpare no pains to fire upon the workmen, and retard their conftruction as much as they can, I would advife the engineer to continue the trenches of communication from the parallel to the battery by fap quite round it, in taking care to leave a fufficient fpace for the ditch before the battery to get the earth for making the parapet: then the workmen may go on night and day till the whole is finifhed with very little danger.

Thefe firf batteries muft be made as fubftantial as poffible, in order to refift all the fire the befieged can

ARTILLERY.

bring upon them: as they are too far from the works of the fortification, they can fcarcely be enfiladed, and therefore require no flanks.

Batteries on the glacis.

Thefe batteries are made to make a breach in fome of the outworks, or in the faces of the baftions, and to deftroy the flanks; and as by this time the befieged cannons have been or fhould be difmounted, except thofe placed in the flanks, their parapets need not be above 10 or 12 feet thick; and as by this time the trenches are advanced upon the glacis within 12 or 15 feet of the covert-way the batteries are placed in them; by which lefs labour, lefs materials, and lefs workmen are required: but as they are generally feen in the reverfe, they require flanks againlt the fire of fmall arms.
Sometimes approaches are made ufe of to place batteries in them; in fuch cafes they are widened backwards as far as is required for the recoil; and if the approaches are too deep, the bottom muft be raifed to a proper height with fafcines and earth to place the platforms upon them; and the parapet or breaft-work muft be made of a fufficient thicknefs, and lined with fafcines in the fame manner as mentioned before.

Mortar batteries.

They differ from the former in having no embrafures, and may be funk into the ground: fo that whillt the workmen without, throw the earth inward to make the parapet, others within, may work to throw the earth forward; by which the parapet is much fooner compleated than thofe of cannon: the infide flope fhould be confiderable, that the bombardier may place two pickets, one at the top, and the other about the middle, in order to mark the line of direction for each mortar.

172

ARTILLERY.

The platforms are about 6 feet fquare, 8 diftant from each other, and as much from the parapet, Ooping forwards, and are compofed of 6 planks of 6 feet long, one broad, and 2 or 2.5 inches thick, 4 fleepers, and about 28 pickets. As our mortar beds are made of folid timber, they commonly make a bed of gravel and fand inftead of a platform; but this method is difapproved by the moft experienced officers, efpecially in fieges.

When mortars are placed in the approaches, it is only widened fo much as to have room for the loading and firing the mortar, and the earth dug up ferves to heighten and thicken the parapet without any other preparations.

Battery in a morafs.
To find a convenient fpot of ground in fuch fitua. tions, as likewife to make a road for the cannon and ammunition firm and fecure, meets often with great difficulties, and feldom can be done but on or near the cauleway that leads to the town; and if the place is properly fortified, it has always a flank that enfilades the caufeway from one end to the other: in that cafe a battery muft be raifed near enough to difmount the guns of the place, in order to carry on the approaches by zig-zagues on the caufeway, till you come within a reafonable diftance to make a breach : the fituation of the battery being fixed upon, fafcines, ftone, and earth muft be thrown in to make the foundation of the breatwork and platforms; when this is done to a proper height and levelled, the reft of the parapet is finifhed with gabions, fome of 4 feet diameter, and as much in height; and others 3 feet high only for the embrafures.

It requires 10 for the firft row in a battery of two guns, and 5 for the thicknefs of the parapet, that is, 50 gabions for the under bed. The row towards the town muft be placed firft, and filled with earth brought in bafkets and fand-bags, or elfe thefe gabions muft be ttuffed with wood; then the next row is placed clofe
to the firt, and filled as quick as polfible; and when another row is placed over the middle of the two firft and filled, the workmen will be covered againft the fire of the frmall arms. When this is done the embrafures are marked, and gabions placed all round the merlons, beginning always with thofe towards the place; or elfe the embrafures may be made with fafcines as before: and then the infide or coffers may be filled with gabions, bavins, or fafcines, and earth to fill up the intervals, and make the parapet ftrong and folid. If the height of two gabions is not fufficient, farcines and earth may be ued to make up the deficiency.
The beds of the platforms are made with fafcines, and earth over them, fo as to make it fmooth and firm ; and if that is not fufficient, hurdles may be laid upon that bed, and more earth, and then the platforms in the manner as defcribed before: when the whole is finifhed, and the fafcine over the embrafures fixed, the gabions that mafk the embrafures are taken away, or elfe puifed with a pole into the ditch before it, or fo as not to prerent the feeing the defence of the place.
If there is no fituation near the caufeway, where the battery can be placed to make a breach, or to difmount guns which may fee the breach, there is no other remedy than to carry a road made of fafcines, hurdles, and arth, either from the caufeway, or the neareft firm ground to the place where the battery is to be made.
It happens fometimes that the ground where the battery can be made is feen by a fuperior battery, that will difmount the guns of yours; in this cafe a breaft-work mult be made at 20 or 30 paces before your battery, and embrafures cut in it fo as that you may fire through, and prevent the befieged from difmounting your guns: tiis may always be done if there is ever fo little bias, 25 it happened at O ftend, when befieged in the former war by the French. There was a fpot of ground above the water, which overflowed all the adjacent ground when the tide was in : from this fpot the harbour could

174 ARTILLERY. be enfiladed. Upon the fall of the adjoining baftion to the harbour were placed fourteen 18 pounders, which bore obliquely upon the French batrery of fix 4 pounders; but by raifing another breaft-work about twenty paces behind the firtt, they fired during the whole fiege into the harbour, without being feen or difturbed by the fuperiger battery of the befieged.

Battery upon a rock.

Such a fituation is the moft difficult of any, becaufé there is in many cafes no earth to be found but at a great diftance, fo that the parapet muft be made with fuffed gabions and blocks of wood; the platforms partly cut out of the rock with pick-axes, and partly filled with earth and fafcines : and if the fituation is feen by the befieged guns, which can fcarcely be avoided, and the battery not finifhed in a dark night, it muft be mafked with large trees or pallifades, otherwife the befieged will pour all their fire upon the workmen, to make it in a manner impoffible to finifh it; fince the folinters of the rock are no lefs dangerous than the fhots.

If there is no road to the rock but what paffes near the place, the firft thing to be done is to convey the cannon and ammunition before the befieged have any norice of your intention, otherwife they will oppofe all they can to prevent it; and if they cannor, will render the paffage fo dangerous, as fcarcely to make it practicable.

The fituation of batteries is generally determined by the object to be battered, yet the advantage of the ground is often taken, fuch as a hollow, hedge, bufhes, or old building, if the befieged have neglected to clear the ground ; but care mult be taken that the battery is not too obliquely to make a breach, as it happened at Cartbagina in 1742, where a battery of twenty 24 pounders was made in a copfe, and when finifhed its fituation was fo bad, that after a week's fring the breach was fo little, that a fingle man could not mount it with-

ARTILLERY.

$\left[\begin{array}{l} \text { Numb. } \\ \text { of } \\ \text { Pieces. } . \end{array}\right.$	$\begin{aligned} & \text { Lengts } \\ & \text { of the } \\ & \text { Battery } \end{aligned}$	Men to make the		Tools.	Fafcines in Feet.			Pickets	Mallets	$\begin{aligned} & \text { Hand } \\ & \text { Bills. } \end{aligned}$	Platforms.			Bavins.
		Batter)	Farcin.		10	8	6				Planks	Sleeper	Pickets	
	40 Feet	50	-15	70	70	48	16	59°	10	12	36	10	68	50
4	58	70	25	100	120	76	32	1000	18	16	72	20	128	100
6	76	90	35	130	170	104	48	1410	26	20	108	30	19^{2}	150
8	94	110	45	160	220	132	64	1820	34	24	144	40	256	200
10	112	130	55	190	270	160	80	2230	42	28	180	50	320	250
12	130	150	65	220	320	188	96	2640	50	32	216	60	384	300
14	148	170	75	250	370	216	112	3050	5^{8}	${ }^{6}$	252	70	44^{8}	35
16	166	190	85	280	420	244	128	3460	66	40	288	80	51	400
18	184	210	95	310	470	272	144	3870	74	44	324	90	575	45°
20	202	230	105	340	520	300	160	4280	82	48	360	100	640	$+_{500}$

176 ARTILLERY.

out being fupported. At Minorca the French made d battery under cover of fome empty houfes; and at the Havannab we made batteries againft the fort Moro under cover of a wood. But when there is no cover, and you are obliged to make a battery near the enemy, the beft method is to raife a great heap of earth by way of a cover, and make the battery behind it; and when it is finifhed, the earth is pufhed forward in the ditch, if there is any.

To fecure the gunners againft the fire of fmall arms whilft they are loading the guns, fhutters are made the width of the embrafures, either fliding in grooves, or faftened with hinges, fo as to open or fhut as occafion requires. As to the reft we refer the readers to our attack and defence, page 38, where they will find a plan, and a further explanation of every thing neceffary not mentioned here.

P A R T VIII.

Calculation of the quantity of Artillery and Stores neceffary for a field equipage.

THE eftimates of an equipage either for the field or a fiege, which have hitherto been made, are intermixed with fo many other things, which the duty of an artillery officer has no immediate connection with, that it is fcarcely poffible to diftinguifh the one from the other. It is true that thefe things are neceffary in the field, but then I would mention them in feparate articles, and let the artificers determine what tools and materials each branch wants. We fhall therefore com, pute here the quantity of artillery, ammunition, and ftores; leaving the determination of the reft to thote who are employed to do this bufinefs.

The quantity of artillery required upon different occafions depends on fo many circumftances, that nothing precifely can be determined; not only the ftrength of the army is to be confidered, but likewife the particular circumftances in regard to the action they are about; the pature and fituation of the country; the ftrength of places, whether fea port towns or inland, great or fmall, frong or weakly garrifoned; their quantities of guns and flores; in general, every thing that makes it neceffary to have more or lefs artillery muft enter into the deermination before a refolution can be taken. It was fteemed formerly, that an army of 50000 men fhould have 50 pieces of cannon, with all their appurtenances, and fo more or lefs in proportion; but fince that time much greater number has been ufed, efpecially now, phen two field pieces are allotted to every battalion, pecides a feparate equipage, to be employed upon paricular occafions.

The manner of computing the quantity of powder and Soot for an army.
It will be neceflary that young officers fhould know he manner and principles upon which the quantity of fores for an army are determined; for which reafon re fhall begin with the common light field pieces.
The 3,6 , and 12 pounders light, are commonly harged with a quarter of the fhot's weight; therefore 3 pounder requires for 100 rounds 75 pounds of powler, and 300 pounds of fhot neat weight.
A 6 pounder for the fame number of rounds, I_{50} ounds of powder, and 600 pounds of fhor. The 12 ounder for the fame number, 300 pounds of powder, nd 1200 pounds of fhot. The 24 light pounder is paded with 5 pounds, therefore requires 500 pounds of owder for 100 rounds, and 2400 pounds of hot. thefe four pieces, which are the only calibers ufed ay

N
prefent in the field, require thetefore 1025 pounds of powder, and 4500 pounds of thot for loo rounds.

The long heavy pieces require a charge of one third of their fhot's weight, and no more even for makinga breach, as found by experience. Hence, a 3 pounder heavy requires 100 pounds of powder for 100 rounds; a 6 pounder 200; a 12 pounder 400 ; and a 44 poander 800. Total 1500 pounds of powder, and the fame number of fhot as before.

The quantity of pawder required for howitzes and mortars is uncertain; for it depends on the duftancesthe fhells are to be thrown.

Powder and foot for mufkets, carbines, and pifols.
29 mufket bullets weigh 2 pounds; and hence 700 men, or a compleat battalion require $24 \frac{4}{\frac{4}{3}}$ poundsol lead for one round, or 240% pounds for 100 rounds mufkets, carbines, and piftols require a charge of pow der for loading and priming, equal to half the wright of the bullets; therefore a battalion requires 120 ? pounds of powder to fire 100 rounds.

20 bullets for carbines weigh a pound, whence 12 men, or a fquadron of horfe require 600 pounds of thay for 100 rounds, and 300 pounds of powder. 34 bol lets for piftols weigh a pound; fo that a fquadron to quires 176 pounds of lead, and 88 pounds of powde for 50 rounds.

Now if the ftrength of an army is known, as wella the number of rounds allowed them in a campaign, will be very eafy to know the quantity of powder an bullets that is required. There is fcarcely more round allowed than what we have mentioned here, which feem to be quite fufficient for the foot, efpecially when it confidered, that perhaps one third of an army does a act in an engagement. As for the horfe there is mo than what is neceffary, fince their action confifts chicd with the fword, whilft they are on hoifeback; but
the hed may the dragoons fight alfo on foot in a clofe country full of hedges and ditches, where the horfes cannot pafs, they may be ranked with the foot.
It has been found by experience, that a man may raife a weight equal to his own, and that he may carry or draw about 50 pounds to a moderate diftance; and it has been found, that one horfe can draw as much as feven men ; therefote a horfe will draw or carry 350 pounds, though it is commonly fuppofed, that a horfe can draw buty 300 for a length of time; and it is upon this fuppofition that the number of horles required in the artillery is computed. We have found likewife that fix men will draw a light 6 pounder in the field backwards and forwards.

Number of borfes.

Before we can compute the number of horfes, it is neeeflary to know the weight of each piece; from whence it appears, that a 3 pounder requires but i horfe, a 6 pounder 2, a:12 pounder 3, and a 24 pounder 6 , of the light fort; and the heavy 3 pounder 4 horfes, the fix 7 , the twelve 10, and twenty-four 17 or 18.
Therefore the number of horfes, for a fet of light pieces is 12 , and the number for a fet of the heavy 38 , which is above three times more than the former; and from thence one may imagine how much expence is faved by making ufe of thefe light pieces in a campaign in this article alone, befides what is faved in metal, workmanfhip, and in men to manage them.

Light Pieces.

Caliber.	Weight.	
3	$2: 2$	12
6	$4: 3$	10
12	$8: 3$	8
24	$16: 3$	13

Heavy.

Caliber.	Weight.
3	$11: 0: 0$
6	$19: 0:$
12	$29: 0:$
24	$51: 1:$

[^2]180 ARTILLERY.
It muft be obferved, that though horfes may diaw fuch a weight upon a common carriage, yet as thofe of guns are fo injudicioully contrived, and the draiughefio difadvantageous, as we have fhewn in the conftruation of limbers, the 12 pounders and upwards' require more horfes than what we have fet down here. Butto give fome idea of the number of horfes required in the artillery, we fhall fet down here the number employed in the campaign of $\mathbf{1 7 4 7}$, given to me by Colonel Mirbelfon, where the reader will find many articles that could not be known without experience ; and fron thence it may be guefled what would be neceffary in fieges.

Number of horfes ufed in tbe campaign of $\mathbf{1 7 4 7}$.

Spare carriages for guns.

1 Nine pounder
2 Six pounders
4 Three pounders
Spare limbers.
3 Twelve pounders
Con

ARTILLERY. 18i

Baggage waggons for the officers.

Waggons for fires.
Flag-waggon for the army and artil-\}
levy guard

1 - 3
Picket

$N . B$. Several remarks are to be made on this account, 4 in order to underftand it rightly. The flag gun, which is a 12 pounder, had 17 horfes to draw it, although the reft had but 15 , which makes up the number 92 horfes for the fix 12 pounders: with regard to the wag. gons, fome were drawn by three horfes, and others by tour; thus the comptroller had two waggons drawn by four horfes, and one by three. As to the ammunition carriages which were deducted, the colonel forgot on what account; all he remembers is, that they were either
either detached, or were not brought into the field that campaigns but as to the number of horfes employed, the account is right. Hence it appears, that there are many things neceffary, which can no otherwife be known than by practice. We fhall therefore add an account of the fores carried into the field the fame year, where the reader will find how neceffary it is to ftudy that branch of bufinefs, if he intends to be a compleat artillerift.

Stores for the army, in 1747, alphabetical.

For pontoons

For pontoons	
Cartridges, fannel, \int_{0}^{12} pounders \quad - 180	
Cartridges, flannel,	$\left\{\begin{array}{l}\text { ¢ - - } 192\end{array}\right.$
	$\left[\begin{array}{l}\text { - } \\ 3\end{array}\right.$
For howitzes ${ }^{\text {a }}$ - - ${ }^{1040}$	
	\int^{12} pounders - 30
Ditto with round fhot $\left\{\begin{array}{l}\text { 9 } \\ 6\end{array}\right.$	
	70

Empty paper cartridges
Cartridges for murkets - $\quad \begin{aligned} & \text { - } 2220 \\ & -76152\end{aligned}$

Crows, iron
Canteens
Caps for mortars
Cartouch boxes
Chariot for kettle drum
Cloths $\left\{\begin{array}{l}\text { hair } \\ \text { oil }\end{array}\right.$
Clouts,
Spare $\begin{array}{lll}\text { body } \\ \text { linch }\end{array}$

ARTILLERY. $\quad 185$

ARTILLERY.

Haveracks
Helves, fpare, for pickaxes
Heads, fpare, for kettle drums - -
Hemp rubbifh, lb.
Hides tanned

Hoops, hazle - - - 1000^{4}
Horns, powder
Howizes.
Irons

$$
\begin{aligned}
& \begin{array}{l}
\text { Iron priming, } 4 \text { to a fet } \\
\text { Irons for marking horfes }
\end{array}
\end{aligned}
$$

Mea
Med
Mor

Mou

Kettles, copper, with covers
Keys, fpring
Ladles with ftaves $\left\{\begin{array}{llll}12 & \text { pounders } & \text { - } & 6 \\ 9 & - & - & 6 \\ 6 & - & - & 20 \\ 3 & & - & 26\end{array}{ }_{l} \quad\right.$ Nails
Ladles for 8 inch howitz
Lanterns $\left\{\begin{array}{l}\text { dark } \\ \text { Mufcovy } \\ \text { ordinary } \\ \text { tin }\end{array}\right.$

$-$

Links, dozens
Lines, Hamborough, lb
$\begin{array}{lllll}\text { Lint ftocks }\left\{\begin{array}{lll}\text { with cocks } \\ \text { without }\end{array}\right. & - & - & \text { - } & 60 \\ 60\end{array}$

ARTILLERを。

Meafure for coals 1 buhnel - \quad I
Medicines, chefts - - 2
$\begin{array}{ccc}\text { Mortars, coehorn - - } \\ \text { Ccarbines } & 6\end{array}$
Moulds for $\left\{\begin{array}{lll}\text { piftols } & - & 2 \\ \text { muikets } \\ \text { ditto }\end{array} \quad-\quad-\quad 2\right.$

188
ARTILLERY.
Powder, corned, barrels Rods for $\left\{\begin{array}{l}\text { market } \\ \text { carbine } \\ \text { piton }\end{array}\right.$ - 668 Rings for forelocks

Ropes, drag

Rope tarred, $2 \frac{1}{2}$ inch feet
Ropes, white, coils
Saws crops cut
Scales, brats, pairs

Shells, empty $\left\{\begin{array}{l}8 \text { inch } \\ 5.5\end{array}\right.$
Shells, filled $\left\{\begin{array}{llll}8 & & \text { - } \\ 5.5 & \text { - } & 294 \\ \hline\end{array}\right.$
Sheep-fkins
Shovels

- Shot, lead $\left\{\begin{array}{l}\text { mufket, tons } \\ \text { carbine } \\ \text { pistol }\end{array}\right.$

There:

Slings

I had this account from the Tower, but could have wifhed that the particulars of each fort had been in feparate articles, which we might have done, were is
1.92 'A R TILLERY. not that we thought the reader would be pleafed to feo the order and the particulars as cuftomary.

Order of General Belford's march of the Artillery.

1. A guard of the army.
2. The company of miners, with their tumbrel of tools, drawn by 2 horfes.
3. The regiments of artillery front guard.
4. The kettle drums drawn by 4 horfes, and tro trumpeters on horfeback.
5. The flag gun drawn by 17 horfes, and tive 12 pounders more, by 15 horfes each.
6. Eleven waggons with ftores for the faid guns, and one fpare, by 3 horfes each.
7. Six 9 pounders drawn by in horfes each.
8. Nine waggons with ftores for the faid guns, and one fpare, by three horfes each.
9. Five long 6 pounders, by 7 horfes each.
10. Seven waggons with fores for ditto, and a fpare one, drawn by 3 horfes each.
11. Five long 6 pounders, drawn by 7 horfes each,
12. Six waggons with fores for ditto, and a fpare one, by 3 horfes each.
13. Four long 6 pounders, by 7 horfes each.
14. Five waggons with ftores for ditto, and a fpare one, by 3 horfes each.
15. Two howitzes, by 5 horfes each.
16. Four waggons with ftores for ditto, by 3 horfes.
17. Six fhort 6 pounders, by 2 horfes each.
18. Three waggons with ftores for ditto, by 3 horfes each.
19. Six royals, with their fores in four waggons, by 3 horfes each.
20. One 12 pounder carriage, by 7 horfes; one 9 pounder carriage, by 5 ; one long 6 pounder carriage, by 5 ; two fhort, by 2 ; one fhort and one long lim. bers, by 1 horfe; and two forges, by 2 each.
21. Twenty

ARTILLERY

21. Twenty ammunition carts, by 3 horfes each.
22. Nineteen waggons, with mufket cartridges, and one fpare, by 3 horles each.
23. Thirty waggons with powder, and one fpare, by 3 horfes each.
24. Thirty waggons with mufket fhot, and one fpare, by 3 horfes each.
25. Twenty-five waggons with intrenching tools, and one fpare, by 3 horfes each.
26. Twenty-five waggons with fmall fores, and one fare, by 3 each.
27. Six waggons for artificers, with 4 fpare, each by 3 .
28. Thirty-two baggage waggons, 9 by 4 horfes, and 23 by 3 .
29. Thirty pontoons and 3 fpare carriages, each by 7 .
30. The artillery rear guard.
31. The rear guard from the army.

It muft be obferved, that there are parties of gunners and matroffes marching with the guns; there are likewife fome parties of pioneers interfperfed here and there to mend the roads, when they are fpoiled by the fore carriages.
There was then 1415 horfes employed this campaign; 32 guns, 2 howitzes, 6 fmall mortars, 244 waggons nd carts, and laftly, 30 pontoons; 20 of thefe laft are fteemed fufficient for any part of Flanders, becaufe here is no river in this country that requires more to make a bridge over it.
The French march their artillery much in the fame manner, buts divide it into brigades, each of which is ommanded by its proper officers, has a detachment of ioners to affilt in bad roads, as likewife a guard of unners and matroffes: the firft brigade confifts always ff fome light pieces, followed by their proper ammuition, and preceded by a waggon loaded with tools

194

ARTILLERY.

in order to make and clear the roads, if there is anr occafion; a gin follows each divifion loaded upon a fpare carriage; the next brigade follows in the fame order, and preceded with a carriage loaded with took with a detachment of pioneers.

The middle brigade confifts of the heavieft pieces and is called the park brigade; and as the others ass only followed by fo much ammunition as is fufficient upon a fudden occafion, the reft follow the park brigads After this comes the baggage, and then the pontoons, with this referve, that if the army is to crofs a sing then as many pontoons march at the head as are fuje cient to make a bridge.
N. B. The front guns fhould always carry rounds in their lockers, to be ready to any fudden occafion, the pieces fhould be loaded and the gunners have their matches lighted duriy the march.

The detachments which march at the heads of ite brigades, are to take care that the army baggag not crofs the artillery, and the pioneers, if any cardey is overfet or ftopt, to affift it; and in that caff, whe is given to the brigades before to ftop, till all are red to march, and when there is any ftopping behind, before draw up clofe at the fide of each other, till reft come up, and then march on a common Regularity and order thould be obferved by all mee to prevent confufion, which is almoft impoffible wha there are fo many carriages.

It muft be obferved, that the heavy 24 pounders; upwards, and the mortars, mult be carried upon blad carriages; for they would require too many horfend draw them upon their own. Thofe who want a fartif infight into thefe affairs, may confult S. Remy's Trealf of Artillery, where they will find every thing explaii in a very ample manner; and which we could not dot

ARTILLERY.

fo fmall a work as this. We intended to treat of the moft effential part only, and fuch as fhould be known to moft artillery officers, who expect to have a command.

To form a park, of Artillery. Plate XXVIII.

The artillery is generally placed about 300 paces before the middle of the firt line of the army, upon fome rifing ground, except a more convenient fpot of ground happens to be before fome wing; but let the fituation be where it will, the manner of forming the park is the fame, except that fome artillery officers differ in the difpofition of the carriages. Some place all the cannon and mortars in the front, with their fpare carriages; others are for dividing the equipage into brigades, and place the firft in the front line, the fecond into the next; and fo on. But the beft approved method is to divide the artillery into brigades, and to place the guns of the firft to right of the front line, and their ammunition behind them in one or more lines; then thofe of the fecond brigade next to the firft in the front. leaving five paces between them, and their ammunition behind them, as before; and continue placing all the reft in the fame order, the pontoons forming the laft line. General Belford's difpofition in the laft war was :

The firft line confifted of 32 guns mounted upon their carriages, feven fpare carriages, 20 ammunition carts, and two howitzes; the guns pointing forwards.
(fecond line of 50 waggons.
The $\{$ third of 52 waggons.
fourth of 50 waggons.
fifth of 14 waggons, 30 pontoons, and three fpare carriages. Each carriage takes up two paces or yards, and they are placed at the fame diftance in the fame line; the fecond line is 30 paces behind the firft; the two next 20 from each other; and the laft 30 again.2
The

The artillery companies and miners are half incamped to the right, and the other half to the left of the park, in the ufual manner, with fome of the lieutenants in the rear of them.
In the rear of, and 12 paces from, the park are incamped the civil lift all in one line; behind thefe, and at 30 paces diftant, is a line of the remaining lieutenants; and behind thefe the captains and commifiaries.

Oppofite to the middle, and 3° paces behind the captain's line, is the major's tent ; and behind this, at 20 paces, the colonel's to the right, and the comptroller's to the left.
Oppofite to the middle, and 50 paces before the park, is placed the army guard; and oppofite to the right wing, the artillery guard at the fame diftance.

The French method is; the cart loaded with tools, which marches at the head, is placed to the right of the firt line; next to that the guns of the firtt brigade, which commonly confifts of 4 or 6 fmall pieces, with a fpare carriage to the left of them; the ammunition carriages of this brigade are placed behind in one or more lines, at 30 paces diftant from line to line. After this, the fecond and fucceeding brigades are placed in the fame manner, leaving five paces interval between the brigades : they continue thus to place all the guns, with their fpare carriages, in the front line; the laft line is made by the pontoons and other carriages.
S. Remy fays, that feven pontoons will be fufficient to make a bridge over any river in Flanders; but I believe he did not mean the Scheld or the Maefe, which
\sim feem to require more. It is however certain, that they carry no more than 20 pontoons and two fpare carriages into the field; which is one third lefs than we do.

In the middle of the front two light pieces are advanced at a diftance of 20 paces, loaded with powder for the alarm guns ready to be fired when required.

To the right of the park are placed the artificers, with their tools, materials, and baggage, in a line from the front to the rear. To the left of the park, the commiffaries aud their baggage; to the right of the artificers is incamped the firft battalion of artillery, with their baggage and officers behind them in the ufual manner; and to the left of the commiffaries, the fecond battalion in the fame manner as the firft.
The horfes of the equipage are placed behind the firft battalion, except thofe of the picket, in the rear of the park.

What has been faid here is fufficient to give a clear idea of a park for a field equipage to a young officer; but, with regard to one before a town befieged, we fhall refer the reader to the works of French authors, who have wrote largely upon it.

Remarks.

To determine the quantity of guns, ammunition, ftores, and every thing elfe neceffary in the field or a fiege, fo as to have enough, and no more, requires more knowledge and experience than can be found in one man. The French have a fet of officers, whofe bufinefs it is to manage thefe affairs, and who are gradually initiated into it. It is from their works that moft nations of Europe copy the quantities of ftores wanted upon different occafions. As our commiffaries of ftores are taken into the fervice when they are wanted, and difcharged again fo fcon as the war is over, it is impofible we fhould ever have any one capable of making a proper eftimate, unlefs the artillery officers would undertake that branch of bufinefs, which they conceive not to be their duty; but as they have more opportunities to be informed than any body elfe, and if any material article fhould be wanted in an action they may be blamed, I imagine it would conduce much to their honour, and be at the fame time for the public advantage, if they did. It was to affift them as much as in my power, that this work was wrote, which, by the help of expe-

198 ARTILLERY.

rience, will, I hope, be fufficient to make an eftimate of the moft material articles, leaving the reft to the artificers to determine the quantities of materials and tools they want, or to thofe who have been employed in that bufinefs.

Before we leave this fubject, we muft take notice of fome defects in our ftore carriages. As there are a great number of them not fo well contrived as they fhould be, it not only increafes ufelefs expences, but likewifo caufes more trouble in the marching, and thould be avoided. Firft, as our powder carts hold no more than four barrels, and a great quantity is required in all expeditions, they are not fufficient; for which,reafon there fhould be powder waggons to hold twelve bairels each. It is true, that the powder carts carry leaden bullets and flints at the fame time; and are therefore more convenient to follow the battalions; but the reft fhould be carried in much larger quantities. The fame thing may be obferved in refpect to all other carts; though they may be ufeful upon fome particular occafions, yet they fhould not be ufed in carrying great quantities of any kind; for the whole weight lying upon one axle-tree, muft require more horfes to draw a weight, than when the fame weight lies upon two. This every carrier mult know; and therefore no more carts fhould be ufed than are neceffary.
As to the pontoon carriages, we have obferved, after itheir conftruction, how unfkilfully they were made; the pontoons being twenty feet long, which is longer than any waggon, and yet are fupported only by one axle-tree ; therefore the fhaft-horfe is hardly able to fupport the weight laid upon it. As a pontoon cannot weigh above 1200 lb . with all its appurtenances, it appears very extraordinary, that there fhould be feven horfes required to draw each, it can certainly be owing to no other caufe than to the ill contrivance of the carriage : I would therefore make them with four wheels, and the fore ones but low, with a high bollter, that it
may turn with more eafe in narrow roads; this being done, I ams perfuaded, thav four horfes would be fufficient to draw them. The travelling forge is no better contrived than the pontoon carriages; for, when it is to be ufed, it is fupported before by two props fixed to the fhafts, which, by the leaft accident, may give way, and down it goes. Nothing but the fondnefs for carts can excufe fuch a contrivance. [This has been remedied in fome refpect, as we have obferved before.]

All carriages made ufe of in the artillery have fhafts; and, to prevent the great length of thofe that require a great number of horfes, the rule is to draw by pairs a-breaft, which is an abfurdity no where elfe to be meet with; for when the road is frequented by carriages drawn by two horfes a-breaft, there is always a ridge in the middle, which the fhaft-horfe, endeavouring to avoid, treads on one fide, whereby the wheels catch againft the ruts, and ftop the carriage ; and when the fore horfes bring them back, he treads on the other fide, where the fame happens again; fo that the fhaft-horfe; inftead of being ufeful any other ways than to fupport the fhafts, becomes a hindrance to the reft:, on the contrary, if the road is frequented by carriages drawn by horfes all in a ftring, the fore-horfes muft either tread in the ruts, or elfe the road mult be quartered; and in that cafe the fhaft-horfe muft walk in the rut; confequently, in all roads, except they are paved, either the fhaft or the fore-horfes muft draw with all the difadvantages poffible. This has never been taken notice of by any of thofe who have the direction of thefe affairs, though no carriages require more perfection in their conftruction than thefe, on account of the great number wanting, and the heavy burthen that moft of them are obliged to carry.

This defect may be remedied by making two pair of fhafts in all four-wheel carriages, in the fame manner as is done in waggons that carry great loads.

Laboratory Works:

My defign is not to give here any more than what is
ufe wh mu juft neceffary for the young artillerift to know in the courfe of his duty, referring that part which regards the fire,works made for rejoicing to the excellent Treatife on Artificial Fireworks, wrote by Robert Fones, Lieutenant in the Artillery, who gives all that can be faid on that fubject, and has himfelf practifed every part of it. Printed for F. Millan.

GRAPESHOT.

The number of fhot in a grape varies according to the fervice or fize of the guns; in fea-fervice 9 is always the number; but by land it is increafed to any number or fize; from an ounce and a quarter in weight, to 3 or 4 pounds. It has not as yet been determined, that I know of, what number and fize anfwers beft in practice; which I think ought to be tried : for it is well known, that they often fcatter fo much, that only a fmall number take place. It would not be a ufelefs experiment, to try at what diftance they would do moft execution, and what is the beft charge of powder. In fea fervice, the bottoms and pins are made of iron, whereas thofe ufed by land are of wood; for what reafon this.diftinction is made, I cannot tell, unlefs that thefe iron bottoms i are fuppofed to deftroy the riggings of Mips more than the wooden would do.

To make grapefhot, a bag of coarfe cloth is made juft to hold the bottom which is put into it; then as many fhot as the grape is to contain; and with a ftrong packthread they are quilted to keepthe fhot from moving: and when they are finifhed are put into boxes for carriage, to be tranfported where-ever it is neceffary. When the fhot are very fmall, they are put into tin boxes that juft fit the bore of the gun. Leaden bullets are likewile
ufed in the fame manner. It muft be obferved, that whatever number or fizes of the fhots are ufed, they muft weigh with their bottoms and pins nearly as much as the fhot of the piece.

Cartridges.

The loading and firing guns with cartridges is done much fooner, and lefs liable to accidents, than with loofe powder. They are made of various fubftances, fuch as paper, flannel, parchment, and bladders. When they are made of paper, the bottoms remain in the piece, and accumulate fo much, that the priming cannot reach the powder; and therefore they muft be drawn from time to time, which retards the fervice.

They have another inconveniency, which is, they retain the fire ; and, if particular care is not taken in fpunging the piece, they will fet fire to the next cartridge, and the gunner that puts it into the piece will be in danger of lofing a hand or arm, as has fometimes happened. When they are made of parchment or bladders, the fire fhrivels them up, whereby they enter into the vent, and become fo hard, that the priming iron cannot remove them fo as to clear the vent. Nothing has been found hitherto to anfwer better than flannel, and is the only thing ufed at prefent, becaufe it does not keep fire, and therefore not liable to accidents in the loading; but as the duft of powder paffes through them, a parchment cap is made to cover them, which is taken off before this is put into the piece.

The beft way of making flannel cartridges is, is my opinion, to boil the flannel in fize; this will prevent the duft of the powder from paffing through them, and renders them ftiff, and more manageable; for without this precaution they are fo pliable, that when they are large, and contain much powder, they are very inconvenient in putting them into the piece. The Saxon, who introduced our prefent light field pieces, had a particular method

282

ARTILLERY.

mechod of preparing cartridges, which was fuch, that when laid into the fire they would not burn ; and yet, by dipping them into water before they were put into the piece, would take fire as quick as powder, but how he did it nohody could tell; for he would not part with his fecret.

In quick firing the fhot is fixed to the cartridge by means of a wooden bottom, hollowed on one fide f_{0} as to receive nearly half the fhot, which is faftened to it by two fmall flips of tin croffing over the fhot, and nailed to the bottom; and the cartridge is tied to the other end of this bottom. They are fixed likewife in the fame manner to the bottoms of the grapefhot, which are ufed in field pieces.

Portpires.

Portfires are ufed fometimes inftead of matches, to fet fire to powder or compofitions; and are diftinguifhed into wet and dry. The compofition of wet portfires is, faltpetre 4, fulphur 1 , and mealed powder 4 ; when the compofition is well mixed and fieved, it is to be moittened with a little linfeed oil, and well rubbed with the hands till all the oil is well mixed with the compofition. The compofition of dry portfire is, falpetre 4, fulphur 1 , mealed powder 2, and antimony 1. Thefe compofitions are drove into fmall paper cafes, and to kept till they a are ufed.

Quickmatch.

It is made with three cotton ftrands drawn into length, and put into a kettle juft covered with white wine vinegar, and then a quantity of faltpetre and mealed powder is put in it, and boiled till well mixed. Others put only faltpetre into the water. After that, it is taken out hot, and laid into a trough where fome mealed powder, moittened with fpirits of wine, is thoroughly wrought

ARTILLERY.

wrought into the cotton, by rolling ir backwards and forwards with the hands: when this is done, they are taken out feparately, and drawn through thealed powder, then hung upon a line till dry.

TUBES ufed in quick firing.

Thefe tubes are here made of tin : their diameter is two tenths of an inch, which is fo as juft to enter into the vent of the piece; about 5 or 6 inches long, with a cap above, and cut nanting below in the form of a pen ; and the point is ftrengthened with fome folder, that it may pierce the cartridge. Through this tube is drawn a quickmatch; and the cap is filled with mealed powder moiftened with fpirits of wine. To prevent the mealed powder from falling out by carriage, a cap of paper is tied over it, which is taken off when ufed; but latterly this cap is made of flannel fteeped in Ppirits of wine, and with faltpetre diffolved in it; and there is no occafion to take it off, fince it takes fire as quick as loofe powder.

An objection is made againft thefe tubes, which is, that the tin is apt to fpoil the quickmatch when they are kept for fome time ; and it is imagined, that falt water would foon corrode them, and therefore not proper to be ufed on board of fhips; this however has not been tried as I know of. The Frencb ufe a fmall reed, to which is fixed a wooden cap about two inches long; they are filled with mealed powder moiftened with fpirits of wine, and a fmall hole is made through them the fize of a needle, through which the fire darts with great violence, and gives fire to the cartridge, which mult be pierced beforehand with the priming iron. Thefe tubes may be kept a great while without being fpoiled; but the piercing the cartridge retards the quicknefs of firing. The forementioned Saxon made his of copper, tapering towards the end, fo as to enter the vent about half an inch, which is made fo far in the fame form, and the

Abstract

204 ARTILLERY. reft very narrow : they are filled in the fame manner as the Frencb, and when fired, the flame darted through the carrridge without being pierced.

FUSES for foells and band-grenades.

The compofition for fufes is faltpetre 3 , fulphur t, and mealed powder 3,4 , and fometimes 5 , according as it is required to burn quicker. Fuzes are chiefy made of very dry beech wood, and fometimes of hornbeam taken near the root; the upper part of that wood Iplits very eafily, They are turned rough, and bored at firft, and then kept for feveral years in a dry place; the diameter of the hole is about a quarter of an inch, a little more or lefs is of no confequence ; the hole does not go quite through, leaving about a quarter of an inch at the bottom ; and the head is made hollow in the form of a bowl. The compofition is drove in with an iron driver, whofe ends are capped with copper to prevent the compofition from taking fire ; and equally hard as poffible; the laft fhovel-full being all mealed powder ${ }_{2}$ and two ftrands of quickmatch laid acrols each other being drove in with it, the ends of which are folded up into the bowl, and a cap of parchment tied over it till ufed. It will not be improper to obferve, that, when fhells are to be thrown at a fmall diftance, the compofytion fhould be made quicker than when they are to be thrown at a greater; for, by cutting them fo as to burn but a fhort time, they might not be long enough to be well fixed into the fhell, by which the blaft of the powder in the chamber would blow them out, without the fhell being able to burft. It muft likewife be obferved, that the cuftom of fixing the fhells at home is very bad; fince it is not known how long they fould burn; and if they do not burft as foon as they fall, the execution is but trifling. Another difadvantage attends this practice; when they are carried into a hot climate the wood flrinks, though ever fo dry before; and the fuzes loofen
fo much, that they fall out in the fflight of the fhell before it falls to the ground.

When the fufes are to be drove, the lower end is cut off in a flope, fo as the compofition may give fire to the powder; and they muft have fuch a length as to burft nearly as foon as the fhell touches the ground. When the diftance of the battery from the object is known, the time of the fhell's flight may be computed nearly; which being known, the fuze may be cut accordingly, by burning two or three, and making ufe of a watch or a ftring by way of a pendulum.

Before fhells are loaded, they mult be well fearched within and without by means of a copper grater, to fee. whether there are no holes or cavities in them ; after that they are put into a tub of water, fo as to cover them, with an empty fufe drove into them; and the mouth of a bellows, being introduced into the fuze, and worked, will caufe bubbles in the water, if there are any holes in the fhell; but if no bubbles appear, it is a fign the fhell is found and fit for fervice.

When they are loaded, care muft be taken that they are very dry within; and if the fpike which fupports the corp when they are caft, and which remains in them, is not beat down, it muft be done then, otherwife it would fplit the fufe. Then the powder is put into it with a funnel, and not quite filled, that the fuze may have room to enter, which fufe is preffed in at firft by the hand as far as it will go_{2} and then drove with a mallet as hard as poffible, taking care however not to fplit it; for if the lealt crack was in it, the compofition would give fire to the powder, and the fhell would burft either in the mortar or in the air, and fo do no execution.
It is a query how much powder is to be put into a fhell, fo as to make it burft in moft pieces ? It is agreed by moft officers that they fhould not be quite filled; one that has taken moft pains to find it out is of opinion that

ARTILLERY.

' they fhould be filled within one third part of what thet can hold,
Lieutenant Pirle, a very ingenious mechanic, loft in the Dodington fome years ago going to the Eaff Indien, had found out a method, fo that as foon as the fhell touched the ground it burfted : but being too modeft a man, had not the affurance to propofe it to the mafter general of the ordnance, whereby the world was diprived of fo ufeful an invention.
If the fufes are to be kept for fome time after they are drove, the top mult be covered with a mixture of pitch 2 , rofin 1 , and bees wax 3 , whereby no air can come to the compofition; and it will keep as long as you pleafe.
Carcasses.

None but round carcaffes are ufed at prefent, the flight of the oblong are fo uncertain, that they have been quite laid afide. The compofition is pitch 2, faltpetre 4, fulphur 1, and corned powder 3. When the pitch is melted, the pot is taken off, and the ingredients well mixed put in ; then the carcafs is filled with as much as can be preffed in.

Ligbt Balls to difcover the enemy's works.

There are various forts defcribed by different authors. Some are made of tow dipped into a compofition of fulphur, pitch, rofin, and turpentine; and worked up all together into a ball. Others take a ball of ftone or iron, which is covered with feveral coats of compofition much like that before-mentioned, till of a proper fize; and the laft coat is to be of grained powder. But the beft fort, in my opinion, is to make a fhell of papet the fize of the mortar, and to fill it with a compofition of an equal quantity of fulphur, pitch, rofin, and mealed powder; which being well mixed, and put in warm, will give a clear fire, and burn a confiderable time.

There are many more things ufed in the defence of a breach; fuch as facks filled with powder, bottles, barrels, \mathcal{F}_{c}. but as the chief intent of all thefe is to fet fire, and blow up the affailants, and which every military gentleman may eafily execute, we thall fay no more here about them; our defign being only to inftruct the young artillerift in the moft effential parts of his bufinefs; and to make him mafter of thefe matters, he muft work in the laboratory; for practice is the beft mafter.

Firgship, bow to prepare it.

From the bulkhead at the forecaftle to a bulkhead to be raifed behind the main chains, on each fide and acrofs the fhip at the bulkheads, is fixed clofe to the Ohip fides, a double row of troughs, two feet diftance from each other, with crofs troughs quite round, at about two feet and a half diftance; which are mortifed into the others. The crofs troughs lead to the fides of the fhip, to the barrels, and to the port-holes, to give fire both to the barrels and to the chambers, to blow open the ports; and the fide-troughs ferve to communicate the fire all along the thip and the crofs troughs.

The timbers of which the troughs are made are about five inches fquare; the depths of the troughs half their thicknefs, and they are fupported by crofs pieces at every two or three yards, nailed to the timbers of the fhip; and to the wood-work which inclofes the fore and main mafts, and takes in an oblong in the middle of the deck, extending to the outide of both the matts, and in breadth is near one half of the deck; and is what makes the carpenter's room for his ftores. The decks and troughs are all well paved with melted rofin.

On each fide of the fhip are cut out fix fmall portholes, in fize about 15 by 18 inches, the ports opening downwards, and are clofe caulked up: againft each port is fixed an iron chamber, which, at the time of firing the fhip, blows open the ports, and lets out the fire.

208
 AKTHLEETY.

At the main and fore chains on each fide is a wooden funhel fixed over a fire barrel, and comes through a feutte in the deck up to the fhrouds to give fire to them, rand between them are cur two feuttles on each fide the fhip, which alfo ferve to let out the fire, Both funnels and feuttles muft be fopt with plugs, and have fail-cloth or canvas nailed clofe. over them, to prevent any accident happening that way by fire to the combuftibles below.
The port-hole, funnels, and fcuttles, not only ferve to give the fire a free paffage to the outfide and upper parts of the fhip, and its rigging, but alfo for the inward air, otherwife confined, to expland itfelf, and puilh through thofe holes at the time of the combuftibles being on fire, and prevent the blowing up the decks, which otherwife mult of courfe thappen from fuch a fudden and violent rarefaction of the air as will then be pro. duced.
In the bulkhead behind on each fide is cut a fmall hole, large enough to receive a trough of the fame fize as the others; from which, to each fide of the fhip, lies a leading trough, one end coming through a fally port cut through the fhip's fide; and the other, fixing into a communicating trough that lies along the bulkhead, from one fide of the fhip to the other, and being laid with quickmatch only, at the time of firing either of the leading troughs, communicates the fire in an inftant to the contrary fide of the fhip, and both fides
4 burn together. The communicating trough, which is fixed to the bulkhead, and the leading troughs, are the fame fize as the others.

Manner of preparing S tores.

Fire-Barrels.

The form of the barrels fhould be cylindric, both upon the account of that make anfwering better for
filling them with reeds, and for fowing them on board between the troughs ; their infide diameters are fufficient, if about 21 inches, and their lengths 33 . The bottom parts are firft filled with fhort double dipt reeds fet on end, and the remainder with fire-barrel compofition well mixed and melted, and then poured over them.
There are 5 holes of $\frac{3}{4}$ inches diameter, and 3 inches deep, made with a drift of that fize in the top of the compofition while it is warm; one in the center, and the other four at equal diftances round the fides of the barrel. When the compofition is cold and hard, the barrel is primed by well driving thofe holes full of fuze compofition to within an inch of the top; then fixing in each hole a ftrand of quickmarch twice doubled, and in the center hole two flrands the whole length; all which muft be well fet or drove in with mealed powder; then lay the quick match all within the barrel, and cover the top of it with a dipt curtain, faftened on with a hoop to nip over the head, and nailed on.
The barrels fhould be made very ftrong, not only to fupport the weight of the compofition before firing, in removing and carrying them about, but to keep them together at the time they are burning; for if the flaves are too flight and thin, and fhould burn too foon, fo as to give way, the remaining compofition would be apt to feparate, and tumble upon the deck, which would deftroy the defigned effect of the barrel, which is to carry the fire aloft.

Ibon Chambers.

They are ro iaches long, and 3.5 in diameter; and breeched againit a piece of wood fixed acrofs the portholes, and let into another lying a little higher; when loaded they are filled almoft full of corned powder, and have a wooden tompion well drove into their muzzles; are primed with a fmall piece of quickmatch thruft

$$
P
$$

through

210 ARTILLERY.

through their vents into the powder, with a part of it hanging out; and when the chip is fired, they blow open the ports; which either fall downwards, or are carried away, and fo give vent for the fire out of the fides of the flip.

Curtains.

Are made of barras about $\frac{3}{4}$ of a yard wide, and one yard in length; when they are dipped, two men with each a fork (on a fhaft of the fame fize, with one prong in each if made on purpote) muft run each of their prongs through a corner of the curtain at the fame end; then dip them into a large kettle of compofition well melted; and when well dipped, and the curtain extended to its full breadrh, whip it between two fticks of about 5.5 feet long, and 1.5 inches fquare, held clofe by two other then to take off the fuperfluous compofition hanging to it ${ }^{2}$ then immediately fprinkle faw-duft on both fides to prevent its iticking, and the curtain is finifhed.
N. B. A copper fixed with a furnace is much bettef than a kettle that is not fixed, becaufe it muft be taken off from the fire for every dipping, to prevent the ftripped off compofition from falling into it, which would unavoidably give fire to the whole; and renders the ufe of a kettle tedious that way.

KeEDS.

Are made up in fmall bundles of about 12 inches it circumference, cut even at both ends, and tied with two bands each; the longeft fort is 4 feet, and the fhorteft 2.5 ; which are all the lengths that are ufed. One part of them are fingle dipped, only at sone end; the reft are double dipped, that is, at both ends. In dipping, they mult be put about 7 or 8 inches deep into a copper or kettle of melted compofition; and when drained a
little over it, to carry off the fuperfluous compofition, fprinkle them over a tanned hide with pulverifed fulphur, at fome diftance from the copper,

Bavins.

Are made of birch, heath, or ather fort of brufhwood, that is both quickly fired and tough ; in length 2.5 or 3 feet, the bufh-ends all laid one way; and the other ends tied with two bands each. They are dipped and fprinkied with fulphur the fame as reeds, only that the bufh-ends alone are dipped, and fhould be a little clofed together by hand as foon as done, before they are fprinkled, to keep them more clofe, in order to give a ftronger fire, and to keep the branches from breaking off in ©hifting and handling them.

Disposition of the Stores on board, when laid for firing.

The fire-barrels are placed under the funnels and fcuttles, one to each; and are fixed between the crofs troughs leading to the fides of the fhip, and lafhed to them, and well cleeted to the deck. Thofe at the funnels give fire to the main and fore fhrouds; the reft rifes over the deck through the fcuttles. The plugs muft be taken out of the funnels and fcuttles before the fhip is fired, and the curtains covering the firesbarrels cut open and rolled back, the quickmatch fpread, and the top of the barrels well falted with priming compofition. The curtains are nailed to the beams of the upper deck, hanging down over the troughs, bayins, and reeds.

The priming compofition ; a part of it is laid along the troughs, and the reft, after laying of the reeds and bavins, is regularly ftrewed over all. The fhort reeds double dipped, with fome of the fingle dipped, are laid along both the fides and crofs troughs, and communicate

$$
\mathrm{P}_{2}
$$

the fire both to the barrels and chambers. The reft of the fingle dipped reeds and bavins are fer about the firebarrels, and to the fides of the hip; and fome flung upon the deck.

The quickmatch is laid two or three ftrands thick upon the reeds in the troughs, and about the fire barrels and chambers, to communicate a general fire at once. The reeds in the troughs with the quick match are lathed on, to prevent their falling out by the rolling of the Ship.

The leading troughs are both laid with 4 or 5 frands of quickmatch; as is likewife the communicating trough, that, by firing either of the leading troughs, the com. municating trough may carry the fire to the other fide of the fhip; which then runs along the troughs by the quickmatch on both fides, and give fire to the whole in an inftant.

Tbe Composition made ufe of for Curtains, Reeds, and Bavins, are all the fame, viz.

Divide the compofition into five pors; the pitch and tallow muft be firft thoroughly melted. Tallow well the outfide of the pot to take off the heat; and then put in the powder by fmall quantities, ftirring it well about.

ARTILLERY.

Priming Composition for one Barrel.

Take 20 lb . of powder, which mix well with the petre, fulphur, and rofin, work them well together, breaking it well in working; then put the reft of the powder in by degrees, and work it altogether : fpread it in a trough, and through a hair fieve run 3 pints of oil all over it; then work it well together, and run it through a cane fieve.
N.B. In the following eftimate for the quantity of ftores requifite, the reeds for the barrels are nor included; it will take 100 hort double dipped more than thefe fpecified; but their value is in: cluded in the article of barrels.

Storesfor a Eireship of 150 tons:
Numb. Value.
Fire-barrels - - 80: 0:0
Jron chambers 12 12: 0:0
Priming compofition barrels
Quickmatch barrels -
Curtains dipped - - $30-3: 0: 0$
Long reeds fingle dipped 150 10:15:0
Short reeds $\left\{\begin{array}{ll}\text { double dipped } \\ 75 \\ \text { fingle dipped } \\ 75\end{array} — \begin{array}{l}2: 18: 9 \\ 1: 17: 6\end{array}\right.$
Bavins fingle dipped $209-10: 0: 0$
2uantiry

Quantity of Composition for preparing the Stores of a Fireship.

Total weight of the compofition 3017 equal to C. 26: 3: 2.

Compofition allowed for the reeds for the barrels one fifth of the whole of the laft article, which is equal to 160 lb . and makes the whole 3177 pounds, of C. 28:1:13.

We have completed the feveral branches of the art of war, in eight volumes in ociavo, as promifed. We have done all that lies in our power to treat them with perfpicuity and clearnefs, in order to reduce the whole to as fmall a compais as poffible, for the fake of thofe military gentlemen who have an inclination to be mafters of their bufinefs in a fhort time. We could not en. large upon every particular fo much as might be neceffary, yet whoever renders himfelf mafter of what we have faid, will find that nothing very material has been neglected.

BOOKS Prihted for J. MILLAN, near White-hall:

1 IST of hio Majeffy's Land Forces and Marines, at Home and Abroad, on Full and Half Pay, for this Year; alfo Lifts of the Army from 1754, or any feparate Year.
2 Muller's Works of Fortification, Engineering, Mining, \&e. 8 vols. 21. 8s̀. 6d.
3 Simes's Military Guide, containing a Syftem of the Art of War, Parade and Field Duty, Regulations, Orders, Returns, War* rants, Salutes, \&c. above 100 Figures on Copper.
4 Simes's Military Courfe, cuts, coloured.
5 —— Treatife on the Military Science, 4 to.
5 - Military Inftructor.
${ }_{7}$ King of Prufia's Military Inftructions to his Generals, cuts, 8vo.
8 Campaigns, 12 mo .
9 Smith's Univerfal Military Dictionafy, 4to, many large Plates.
${ }_{10}$ Donkin's Military Remarks, 8vo.
it Beil's Effay on Military firft Principles, 8vo.
12 Wefton's Englifh Flora and Supplement, 8vo.
13. - Gardner's Pocket Kalendar.

14 Dalrymple's Military Eflay, 8vo, cuts.
15 Elementary Principles of Tactics, 8vo. cuts.
16 Obfervations on the prevailing Abufes of the Army.
17 Wolfe's inftructions for Young Officers.
18 General Review Manceuvres, with the Exercife, cuts, coloured.
19. Artillerift's Companion, by T. Fortune.

20 Difcipline for the Norfolk Militia, by Lord Townhend, \&c. fewed, 10s. 6d.
${ }_{21}$ New Exercife by his Majefty's Order, 19.
22 Recruiting Book for the Army, 2s. 6d.
${ }_{23}$ Regimental Book beautifully engraved, 41. 48.
24 Returns for Horfe, Dragoons, and Foot, Átteftations, Farloughs, Difcharges, \&c.
25 New Pruflian Field Regulations, Cuts, 7s. 6d.
26 Captain Miller's Art of Self-Defence, on Copper Plates.
27 Vegetius's ancient Art of War, with Notes by Capt. Clarke, 5^{s} 28 Mac Intire's Marine Difcipline.
29 Value of Commiffions on Full and Half Pay, 25.
30 New Art of War, by Captain Anderfon, 7s. 6 d.
31 Marine Volunteer, by Ologhlin. Cuts.
32 Plans and Forts of America, from actual Surveys.
33 Jones's Artificial Fireworks, with the Addition of Fireworks, Ordnance, \&c. on a new Conftruction, for Sea and Land Service, by Mr. Muller.
34 Drummer's Inftructor, with the Englifh and Scotch Daty, Beatings, Marchings, Calls, \&c. by R. Spencer, 25.
35 Cadet, a Military Treatife.
36 Phipps's Syftem of Military Difcipline.
37 Starrat's Practical Gunnery, difplay'd in the moft eafy manner.
38 A General Effay on Tactics, tranflated from Guibert, 2 vols. 8vo. 27 Copper Plates.
3) Major Rogers's Journal of the late War in America, 5 s.

Frinted for and Sold by J. MILLAN:

40 Major Rogers's concifeAccount of America, alfo the interior Parte their many Nations and Tribes of Indians on the great Zakes and Rivers, their Cuftoms, Government, Number, \&c. with many ufeful and entertaining Facts never before thought of, 5
41 Dillenius's General Hiftory of Land and Water Moffes, Coralsj \&cc. 11, 11s, 6d.
42 The Hiftory, Analy fis, \&c. of above 200 veryrare flowering Plants, Flowers, Parts of Flowers, Flies, \&c. drawn and engraved on 19 Folio Plates, by the late ingenious George Ehret, F. R.S. 8 cc. beautifully colour'd from his original Drawings, 11. 11s.6d.
43 Sheldrake's Herbal on above 100 large Folio Copper Plate, drawn in the moft mafterly Manner from the Originals, when in their higheft Perfection, 41. 4s.-61. 6s. Royal.
44 Sheldrake on Heat and Cold for Green-houfes, 18.
45 Columella on Agriculture, by Gibfon, 4 to, 15 s.
46 Marine Fortification and Gunnery, with 16 large Plates, by Ardefoif, 5 s.
47 Obrien's Naval Evolations, Cuts, 10s. 6d.
48 Obrien's Naval Tactics, Cuts, 105 . 6d.
49 Military Inftructions for Officers detached in the Field, Cuts,
50 Coldbatch on Mifletoe, 18.
51 Barrow's Medicinal Dietionary, 8s.
52 All Shell and other Fiih, both Salt and Frefh Water, brought io Market, with the Times of their being in Seafon, from the original Paintings of Vanhaeken, engraved on 9 fall Shett Copper Plates, 1os. 6d.-11. 18. coloured.
53 Hill's Review of the Royal Society, 4to. 10s. 6d.
54 Palladio, finely engraved by Ware, 7s. 6d.
55 Langley's Gothic Architecture, 4to. 15s.
56 -Inigo Jones's Defigns for Cielings, Ghimnies, Temples, \&ch ios. 6d.
57 Morris's Lectures on Architecture, 2 Parts, 6s:'
58 Antiquities of Hereford Cathedral, 8vo.
59 Perrault's Architecture, Folio, 10s. 6d.
60 Pozzo's Perfpective, Folio, 15 s.
61 Caftell's Villas of the Ancients, Folio.
462 Orthopœedia, or the Art of correcting and preventing Defor mities in Children, 2 vol. Cuts.
63 Dr. Sharpe's Englifh-Hebrew and Englifh-Latin Grammar.
64 Dr. Sharpe's Defence of Chriftianity, 2 Parts, 6 s . Oligarchy is
65 Tandon's French Grammar to learn without a Mafter, $2 s$.
66 Pine's Horace, 2 vol. 21.25.
67 Nollet's Compendium of the Bible, Fr. and Eng. 2 v. 12 mo .6 s ,
68 Smith's. Round Hand and Text Copies, beautifully engraved on 28 Plates, 2s. 6 d .
69 Letters from a Perfian in England, 3^{s}.
70 Prior's Pofthumous Works, 2 vol. 8 vo. 12 s .
${ }_{71} 1$ Prior's Poems, 12 mo : vol ii. 3 s .
7^{2} Buckingham's Works, 2 vol. 8vo.
73 Ozell's Telemachus, 2 vol. 8vo. 10 s.

[^0]: Mr . Boyle fays, that the greateft denfity of air is to the greateft rarefaction, as unity to $5 \mathbf{2 0 , 0 0 0}$.

[^1]: G 4 fcarcely

[^2]: * Belid. Hydraul. vol. i. p. 44. art. 123.

